Suppr超能文献

使用卷积神经网络进行乳腺癌检测:一种基于深度学习的方法。

Breast Cancer Detection Using Convolutional Neural Networks: A Deep Learning-Based Approach.

作者信息

Nasir Faizan, Rahman Shanur, Nasir Nazim

机构信息

Computer Science, Aligarh Muslim University, Aligarh, IND.

Computer Engineering, Aligarh Muslim University, Aligarh, IND.

出版信息

Cureus. 2025 May 3;17(5):e83421. doi: 10.7759/cureus.83421. eCollection 2025 May.

Abstract

Breast cancer remains one of the leading causes of mortality among women, particularly in low- and middle-income countries, where limited healthcare access and delayed diagnosis contribute to poor outcomes. Deep learning, especially convolutional neural networks (CNNs), has shown remarkable efficacy in breast cancer detection through automated image analysis, reducing reliance on manual interpretation. This study provides a comprehensive review of recent advancements in CNN-based breast cancer detection, evaluating deep learning architectures, feature extraction techniques, and optimization strategies. A comparative analysis of CNNs, recurrent neural networks (RNNs), and hybrid models highlights their strengths, limitations, and applicability in medical image classification. Using a dataset of 569 instances with 33 tumor morphology features, various deep learning architectures - including CNNs, long short-term memory networks (LSTMs), and multilayer perceptrons (MLPs) - were implemented, achieving classification accuracies between 89% and 98%. The study underscores the significance of data augmentation, transfer learning, and feature selection in improving model performance. Hybrid CNN-based models demonstrated superior predictive accuracy by capturing spatial and sequential dependencies within tumor feature sets. The findings support the potential of AI-driven breast cancer detection in clinical applications, reducing diagnostic errors and improving early detection rates. Future research should explore transformer-based models, federated learning, and explainable AI techniques to enhance interpretability, robustness, and generalization across diverse datasets.

摘要

乳腺癌仍然是女性死亡的主要原因之一,在低收入和中等收入国家尤其如此,这些国家医疗保健机会有限且诊断延迟导致预后不良。深度学习,尤其是卷积神经网络(CNN),通过自动图像分析在乳腺癌检测中显示出显著成效,减少了对人工解读的依赖。本研究全面综述了基于CNN的乳腺癌检测的最新进展,评估了深度学习架构、特征提取技术和优化策略。对CNN、循环神经网络(RNN)和混合模型的比较分析突出了它们在医学图像分类中的优势、局限性和适用性。使用一个包含569个实例且具有33种肿瘤形态特征的数据集,实现了包括CNN、长短期记忆网络(LSTM)和多层感知器(MLP)在内的各种深度学习架构,分类准确率在89%至98%之间。该研究强调了数据增强、迁移学习和特征选择在提高模型性能方面的重要性。基于CNN的混合模型通过捕捉肿瘤特征集内的空间和顺序依赖性,展现出卓越的预测准确性。这些发现支持了人工智能驱动的乳腺癌检测在临床应用中的潜力,可减少诊断错误并提高早期检测率。未来的研究应探索基于Transformer的模型、联邦学习和可解释人工智能技术,以增强在不同数据集上的可解释性、稳健性和泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c7c/12049196/e3ccb1b05d88/cureus-0017-00000083421-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验