Pokora Mateusz, Goclon Jakub, Margraf Johannes, Panosetti Chiara, Samtsevych Artem, Paneth Piotr
International Center of Research on Innovative Biobased Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Stefanowskiego 2/22, 90-924, Lodz, Poland.
Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-537, Lodz, Poland.
Chemphyschem. 2025 Jul 18;26(14):e202500081. doi: 10.1002/cphc.202500081. Epub 2025 Jun 5.
Semiempirical extended tight-binding (GFN1-xTB) and semilocal density functional theory (DFT)(Perdew-Becke-Ernzerhof (PBE)+D3) calculations are performed to evaluate the structural and electronic properties of five metal-organic frameworks (MOFs): rigid MOF-5(Zn), IRMOF(II)-74(Mg), ZIF-8(Zn), and flexible MIL-53(Al) and MIL-53(Fe). It is found that GFN1-xTB exhibits a similar performance to that of DFT in terms of accuracy of lattice vector preservation. Structural integrity is further supported by the low average root-mean-square displacement (RMSD) of the atomic positions, which remains below 0.3 Å. Consequently, the textural properties are also well preserved by GFN1-xTB, showing good agreement with those obtained from DFT. GFN1-xTB molecular dynamics (MD) simulations exhibit structural stability and correctly predict structural responses to temperature, which is fully consistent with experimental results. In addition, based on MD trajectories, this study constructs time-averaged X-ray diffraction patterns that closely aligned with experimental data. More importantly, GFN1-xTB performs exceptionally well at predicting the bandgap. Overall, GFN1-xTB offers almost semilocal DFT accuracy with significantly higher computational efficiency, making it a valuable tool for describing the geometric, textural, dynamic, and selected electronic properties of MOFs.
进行了半经验扩展紧束缚(GFN1-xTB)和半局域密度泛函理论(DFT)(Perdew-Becke-Ernzerhof(PBE)+D3)计算,以评估五种金属有机框架(MOF)的结构和电子性质:刚性的MOF-5(Zn)、IRMOF(II)-74(Mg)、ZIF-8(Zn),以及柔性的MIL-53(Al)和MIL-53(Fe)。结果发现,在晶格矢量保留精度方面,GFN1-xTB表现出与DFT相似的性能。原子位置的低平均均方根位移(RMSD)保持在0.3 Å以下,进一步支持了结构完整性。因此,GFN1-xTB也很好地保留了结构性质,与从DFT获得的结果显示出良好的一致性。GFN1-xTB分子动力学(MD)模拟表现出结构稳定性,并正确预测了对温度的结构响应,这与实验结果完全一致。此外,基于MD轨迹,本研究构建了与实验数据紧密对齐的时间平均X射线衍射图谱。更重要的是,GFN1-xTB在预测带隙方面表现出色。总体而言,GFN1-xTB几乎提供了半局域DFT的精度,同时计算效率显著更高,使其成为描述MOF的几何、结构、动力学和选定电子性质的有价值工具。