Noumonvi Koffi Dodji, Nilsson Mats B, Ratcliffe Joshua L, Öquist Mats G, Kljun Natascha, Fransson Johan E S, Järveoja Järvi, Lindroth Anders, Simpson Gillian, Smeds Jacob, Peichl Matthias
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
Unit for Field-Based Forest Research, Swedish University of Agricultural Sciences, Vindeln, Sweden.
Glob Chang Biol. 2025 May;31(5):e70223. doi: 10.1111/gcb.70223.
High latitude mires are key ecosystems in the context of climate change since they store large amounts of carbon while constituting an important natural source of methane (CH). However, while a growing number of studies have investigated methane fluxes (FCH) at the plot- (1 m) and ecosystem-scale (0.1-0.5 km) across the boreal biome, variations of FCH magnitudes and drivers at the mesoscale (i.e., 0.5-20 km) of a mire complex are poorly understood. This study leveraged a network of four eddy-covariance flux towers to explore the spatio-temporal variations in ecosystem-scale FCH across a boreal mire complex in northern Sweden over 3 years (2020-2022). We found a consistent hierarchy of drivers for the temporal variability in FCH across the mire complex, with gross primary production and soil temperature jointly emerging as primary controls, whereas water table depth had no independent effect. In contrast, peat physical and chemical properties, particularly bulk density and C:N ratio, were identified as significant baseline constraints for the spatial variations in FCH across the mire complex. Our observations further revealed that the 3-year mean annual FCH across the mire complex ranged from 7 g C m y to 11 g C m y, with a coefficient of variation of 16% that is similar to the variation observed among geographically distant mire systems and peatland types across the boreal biome. Thus, our findings highlight an additional source of uncertainty when scaling information from single-site studies to the mire complex scale and beyond. Furthermore, they suggest an urgent need for peatland ecosystem models to resolve the mesoscale variations in FCH at the mire complex level to reduce uncertainties in the predictions of peatland carbon cycle-climate feedbacks.
在气候变化背景下,高纬度泥炭地是关键生态系统,因为它们储存了大量碳,同时也是甲烷(CH)的重要天然来源。然而,尽管越来越多的研究调查了北方生物群落中样地尺度(约1米)和生态系统尺度(约0.1 - 0.5千米)的甲烷通量(FCH),但对于泥炭地复合体中尺度(即0.5 - 20千米)的FCH大小变化及其驱动因素却知之甚少。本研究利用由四座涡度协方差通量塔组成的网络,探索了瑞典北部一个北方泥炭地复合体在3年(2020 - 2022年)间生态系统尺度FCH的时空变化。我们发现,整个泥炭地复合体FCH时间变异性的驱动因素存在一致的层级结构,总初级生产力和土壤温度共同成为主要控制因素,而地下水位深度没有独立影响。相比之下,泥炭的物理和化学性质,特别是容重和碳氮比,被确定为整个泥炭地复合体FCH空间变化的重要基线限制因素。我们的观测还表明,整个泥炭地复合体3年的年平均FCH范围为7克碳/平方米·年至11克碳/平方米·年,变异系数为16%,这与在北方生物群落中地理上相距遥远的泥炭地系统和泥炭地类型之间观察到的变异相似。因此,我们的研究结果突出了将单站点研究信息扩展到泥炭地复合体尺度及更大尺度时的另一个不确定性来源。此外,它们还表明迫切需要泥炭地生态系统模型来解决泥炭地复合体水平上FCH的中尺度变化,以减少泥炭地碳循环 - 气候反馈预测中的不确定性。