Suppr超能文献

一种广泛使用的涡度相关通量数据插补方法会导致碳平衡估算产生系统偏差。

A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates.

机构信息

Finnish Meteorological Institute, 00101, Helsinki, Finland.

DIBAF University of Tuscia, 01100, Viterbo, Italy.

出版信息

Sci Rep. 2023 Jan 31;13(1):1720. doi: 10.1038/s41598-023-28827-2.

Abstract

Climate change mitigation requires, besides reductions in greenhouse gas emissions, actions to increase carbon sinks in terrestrial ecosystems. A key measurement method for quantifying such sinks and calibrating models is the eddy covariance technique, but it requires imputation, or gap-filling, of missing data for determination of annual carbon balances of ecosystems. Previous comparisons of gap-filling methods have concluded that commonly used methods, such as marginal distribution sampling (MDS), do not have a significant impact on the carbon balance estimate. By analyzing an extensive, global data set, we show that MDS causes significant carbon balance errors for northern (latitude [Formula: see text]) sites. MDS systematically overestimates the carbon dioxide (CO[Formula: see text]) emissions of carbon sources and underestimates the CO[Formula: see text] sequestration of carbon sinks. We also reveal reasons for these biases and show how a machine learning method called extreme gradient boosting or a modified implementation of MDS can be used to substantially reduce the northern site bias.

摘要

气候变化缓解除了需要减少温室气体排放外,还需要采取行动增加陆地生态系统的碳汇。涡度相关技术是量化这些汇和校准模型的关键测量方法,但它需要对缺失数据进行插补或填补,以确定生态系统的年碳平衡。以前对填补方法的比较得出的结论是,常用的方法,如边际分布抽样(MDS),对碳平衡估计没有显著影响。通过分析一个广泛的全球数据集,我们表明 MDS 会导致北方(纬度[公式:见文本])站点的碳平衡错误。MDS 系统地高估了二氧化碳(CO[公式:见文本])的排放源和低估了碳汇的 CO[公式:见文本]封存。我们还揭示了这些偏差的原因,并展示了如何使用称为极端梯度增强的机器学习方法或 MDS 的修改实现来大大减少北方站点的偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a36/9889393/9d33694d12a0/41598_2023_28827_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验