Gu Jingyuan, Chu Zhenyan, Zheng Bowen, Tong Zaizai
State Key Laboratory of Bio-based Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China.
ACS Macro Lett. 2025 May 20;14(5):645-657. doi: 10.1021/acsmacrolett.5c00144. Epub 2025 May 5.
The utilization of polymer crystallization to manipulate the self-assembly of polymeric amphiphiles in solution is gaining increasing attention for the design of anisotropic core-shell nanoparticles and even more complex hierarchical architectures. Notably, the living-crystallization-driven self-assembly (CDSA) method, which involves seeded growth, has emerged as an ambient temperature approach for creating low-dispersity nanomaterials such as one-dimensional (1D) cylinders and two-dimensional (2D) platelets. This technique offers predictable size control and facilitates the creation of segmented structures with spatially defined compositions and functionalities, and in this process the epitaxial crystallization is regarded as the intrinsic mechanism of living CDSA. For this context, in this Viewpoint, we delineate the key aspects of the living CDSA seeded growth method, with a particular emphasis on the mechanism of seeded heteroepitaxial growth employing crystalline cores with distinct chemistries from the polymer crystallization perspective. Revealing the in-depth mechanism of heteroepitaxial crystallization enables the expansion of the design of segmented nanoparticles where the core compositions and functionalities are spatially defined. Utilizing the chemically distinct compositions and polymer crystallization strategies, the synthetic processes of 2D hollow platelets with a unique architecture are also summarized, which are of special interest for soft matter.
利用聚合物结晶来调控两亲性聚合物在溶液中的自组装,在设计各向异性核壳纳米粒子乃至更复杂的分级结构方面正日益受到关注。值得注意的是,涉及晶种生长的活性结晶驱动自组装(CDSA)方法,已成为一种在室温下制备低分散性纳米材料(如一维(1D)圆柱体和二维(2D)片晶)的方法。该技术提供了可预测的尺寸控制,并有助于创建具有空间定义的组成和功能的分段结构,在此过程中,外延结晶被视为活性CDSA的内在机制。在此背景下,在本观点文章中,我们阐述了活性CDSA晶种生长方法的关键方面,特别从聚合物结晶的角度,着重探讨了使用具有不同化学性质的晶核进行异质外延生长的机制。揭示异质外延结晶的深入机制能够拓展分段纳米粒子的设计,其中核的组成和功能在空间上是确定的。利用化学性质不同的组成和聚合物结晶策略,还总结了具有独特结构的二维中空片晶的合成过程,这对于软物质具有特殊意义。