Schiulaz Astrid, Nordio Giovanna, Giacomel Alessio, Easmin Rubaida, Bettinelli Andrea, Selvaggi Pierluigi, Williams Steven, Turkheimer Federico, Jauhar Sameer, Howes Oliver, Veronese Mattia
Department of Information Engineering, University of Padua, Padua, Italy.
Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
Mol Imaging Biol. 2025 May 5. doi: 10.1007/s11307-025-02014-3.
Schizophrenia (SCZ) is a severe psychiatric disorder marked by abnormal dopamine synthesis, measurable through [F]FDOPA PET imaging. This imaging technique has been proposed as a biomarker for treatment stratification in SCZ, where one-third of patients respond poorly to standard antipsychotics. This study explores the use of radiomics on [F]FDOPA PET data to examine dopamine synthesis in SCZ and predict antipsychotic response.
We analysed 273 [F]FDOPA PET scans from healthy controls (n = 138) and SCZ patients (n = 135) from multiple cohorts, including first-episode psychosis cases. Radiomic features from striatal regions were extracted using the MIRP Python package. Reproducibility was assessed with test-retest scans, selecting features with an intraclass correlation coefficient (ICC) > 0.80. These features were grouped via hierarchical clustering based on Spearman correlation. Regression analysis evaluated sex and age effects on radiomic features. Predictive power for treatment response was tested and compared to standard imaging analysis obtained from the Standardised Uptake Value ratio (SUVr) of striatal over cerebellar tracer activity.
Out of 177 features, 15 met the ICC criteria (ICC: 0.81-0.99). Age and sex influenced features in patients but not in controls. The best performance were was by the GLCM joint maximum feature, which effectively differentiated responders from non-responders (AUC: 0.66-0.87), but did not reach statistical significance in classification over SUVr.
Radiomic analysis of [F]FDOPA PET supports its use as a biomarker for assessing antipsychotic efficacy in schizophrenia, highlighting differential striatal tracer uptake based on patient response. While it provides modest classification improvements over standard imaging, further validation in larger datasets and integration with multivariate classification algorithms are needed.
精神分裂症(SCZ)是一种严重的精神障碍,其特征是多巴胺合成异常,可通过[F]FDOPA PET成像进行测量。这种成像技术已被提议作为SCZ治疗分层的生物标志物,其中三分之一的患者对标准抗精神病药物反应不佳。本研究探讨了在[F]FDOPA PET数据上使用放射组学来检查SCZ中的多巴胺合成并预测抗精神病药物反应。
我们分析了来自多个队列(包括首发精神病病例)的273例健康对照者(n = 138)和SCZ患者(n = 135)的[F]FDOPA PET扫描。使用MIRP Python软件包从纹状体区域提取放射组学特征。通过重测扫描评估可重复性,选择组内相关系数(ICC)> 0.80的特征。这些特征基于Spearman相关性通过层次聚类进行分组。回归分析评估性别和年龄对放射组学特征的影响。测试治疗反应的预测能力,并与从纹状体与小脑示踪剂活性的标准化摄取值比率(SUVr)获得的标准成像分析进行比较。
在177个特征中,15个符合ICC标准(ICC:0.81 - 0.99)。年龄和性别影响患者的特征,但不影响对照者的特征。表现最佳的是灰度共生矩阵联合最大值特征,它有效地区分了反应者和无反应者(AUC:0.66 - 0.87),但在分类方面相对于SUVr未达到统计学意义。
[F]FDOPA PET的放射组学分析支持其作为评估精神分裂症抗精神病疗效的生物标志物,突出了基于患者反应的纹状体示踪剂摄取差异。虽然与标准成像相比,它在分类方面有适度改进,但需要在更大的数据集中进一步验证并与多变量分类算法整合。