Suppr超能文献

一个循环回路实现了归一化,模拟了 V1 活动的动力学。

A recurrent circuit implements normalization, simulating the dynamics of V1 activity.

机构信息

Department of Psychology, New York University, New York, NY 10003;

Center for Neural Science, New York University, New York, NY 10003.

出版信息

Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22494-22505. doi: 10.1073/pnas.2005417117. Epub 2020 Aug 25.

Abstract

The normalization model has been applied to explain neural activity in diverse neural systems including primary visual cortex (V1). The model's defining characteristic is that the response of each neuron is divided by a factor that includes a weighted sum of activity of a pool of neurons. Despite the success of the normalization model, there are three unresolved issues. 1) Experimental evidence supports the hypothesis that normalization in V1 operates via recurrent amplification, i.e., amplifying weak inputs more than strong inputs. It is unknown how normalization arises from recurrent amplification. 2) Experiments have demonstrated that normalization is weighted such that each weight specifies how one neuron contributes to another's normalization pool. It is unknown how weighted normalization arises from a recurrent circuit. 3) Neural activity in V1 exhibits complex dynamics, including gamma oscillations, linked to normalization. It is unknown how these dynamics emerge from normalization. Here, a family of recurrent circuit models is reported, each of which comprises coupled neural integrators to implement normalization via recurrent amplification with arbitrary normalization weights, some of which can recapitulate key experimental observations of the dynamics of neural activity in V1.

摘要

归一化模型已被应用于解释包括初级视觉皮层 (V1) 在内的各种神经系统中的神经活动。该模型的定义特征是,每个神经元的响应除以一个因子,该因子包括神经元池的活动的加权和。尽管归一化模型取得了成功,但仍存在三个未解决的问题。1)实验证据支持 V1 中的归一化通过递归放大来操作的假设,即放大弱输入比强输入更强烈。目前尚不清楚归一化如何源自递归放大。2)实验已经证明,归一化是加权的,使得每个权重指定一个神经元如何为另一个神经元的归一化池做出贡献。目前尚不清楚加权归一化如何源自递归电路。3)V1 中的神经活动表现出复杂的动态,包括与归一化相关的伽马振荡。目前尚不清楚这些动态如何从归一化中出现。这里报告了一系列递归电路模型,每个模型都包含耦合的神经积分器,通过具有任意归一化权重的递归放大来实现归一化,其中一些可以再现 V1 中神经活动动态的关键实验观察。

相似文献

1
7
Learning receptive field properties of complex cells in V1.学习 V1 中复杂细胞的感受野特性。
PLoS Comput Biol. 2021 Mar 2;17(3):e1007957. doi: 10.1371/journal.pcbi.1007957. eCollection 2021 Mar.
8
Rhythm and Synchrony in a Cortical Network Model.皮质网络模型中的节律与同步。
J Neurosci. 2018 Oct 3;38(40):8621-8634. doi: 10.1523/JNEUROSCI.0675-18.2018. Epub 2018 Aug 17.

引用本文的文献

3
Balanced state of networks of winner-take-all units.赢者通吃单元网络的平衡状态
PLoS Comput Biol. 2025 Jun 11;21(6):e1013081. doi: 10.1371/journal.pcbi.1013081. eCollection 2025 Jun.
4
Dynamics of energy-efficient coding in visual cortex.视觉皮层中节能编码的动力学
J Neurophysiol. 2025 Jun 1;133(6):2006-2013. doi: 10.1152/jn.00078.2025. Epub 2025 May 5.

本文引用的文献

4
Recurrent interactions in local cortical circuits.局部皮质回路中的反复相互作用。
Nature. 2020 Mar;579(7798):256-259. doi: 10.1038/s41586-020-2062-x. Epub 2020 Mar 4.
8
Human visual cortical gamma reflects natural image structure.人类视觉皮层的伽马反映了自然图像的结构。
Neuroimage. 2019 Oct 15;200:635-643. doi: 10.1016/j.neuroimage.2019.06.051. Epub 2019 Jun 24.
9
Firing rate models for gamma oscillations.γ 振荡的发放率模型。
J Neurophysiol. 2019 Jun 1;121(6):2181-2190. doi: 10.1152/jn.00741.2018. Epub 2019 Apr 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验