Jain Swapan S, McLaughlin Emily C, Perron Gabriel G, Uppuladinne Mallikarjunachari, Kim Seoyoung, Gindinova Katherina, Lundgren Silvie H, Elmelech Liad, Sonavane Uddhavesh, Joshi Rajendra, Narasimhulu Korrapati
Chemistry and Biochemistry Program, Bard College, New York, United States of America.
Center for Genomics and Systems Biology, New York University, New York, United States of America.
PLoS One. 2025 May 5;20(5):e0322308. doi: 10.1371/journal.pone.0322308. eCollection 2025.
Riboswitches are structured elements predominantly found in the 5'-untranslated region of many bacterial mRNA. These noncoding RNA regions play a vital role in bacterial metabolism and overall function. Each riboswitch binds to a specific small molecule and causes conformational changes in the mRNA leading to regulation of transcription or translation. In this work, we have synthesized SK4, a novel nucleoside analog that binds to the guanine riboswitch mRNA of the xanthine phosphoribosyl transferase gene in Bacillus subtilis and terminates transcription of the riboswitch mRNA to a greater extent than the native ligand guanine. Molecular dynamics simulations of SK4 with riboswitch mRNA reveal an overall stable complex with additional bonding interactions in comparison to guanine. Our work with SK4 demonstrates that specific genes in bacteria can be effectively controlled by ligand analogs, providing an alternative mechanism to regulate the function of bacteria.
核糖开关是主要存在于许多细菌信使核糖核酸5'非翻译区的结构化元件。这些非编码RNA区域在细菌代谢和整体功能中起着至关重要的作用。每个核糖开关与特定的小分子结合,并导致信使核糖核酸的构象变化,从而导致转录或翻译的调控。在这项工作中,我们合成了SK4,一种新型核苷类似物,它与枯草芽孢杆菌黄嘌呤磷酸核糖转移酶基因的鸟嘌呤核糖开关信使核糖核酸结合,并比天然配体鸟嘌呤在更大程度上终止核糖开关信使核糖核酸的转录。SK4与核糖开关信使核糖核酸的分子动力学模拟显示,与鸟嘌呤相比,该复合物总体稳定且存在额外的键合相互作用。我们对SK4的研究表明,细菌中的特定基因可以被配体类似物有效控制,这为调节细菌功能提供了一种替代机制。