Suppr超能文献

嘌呤核糖开关适体结构域的突变分析

Mutational analysis of the purine riboswitch aptamer domain.

作者信息

Gilbert Sunny D, Love Crystal E, Edwards Andrea L, Batey Robert T

机构信息

Department of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 215, Boulder, Colorado 80309-0215, USA.

出版信息

Biochemistry. 2007 Nov 20;46(46):13297-309. doi: 10.1021/bi700410g. Epub 2007 Oct 26.

Abstract

The purine riboswitch is one of a number of mRNA elements commonly found in the 5'-untranslated region capable of controlling expression in a cis-fashion via its ability to directly bind small-molecule metabolites. Extensive biochemical and structural analysis of the nucleobase-binding domain of the riboswitch, referred to as the aptamer domain, has revealed that the mRNA recognizes its cognate ligand using an intricately folded three-way junction motif that completely encapsulates the ligand. High-affinity binding of the purine nucleobase is facilitated by a distal loop-loop interaction that is conserved between both the adenine and guanine riboswitches. To understand the contribution of conserved nucleotides in both the three-way junction and the loop-loop interaction of this RNA, we performed a detailed mutagenic survey of these elements in the context of an adenine-responsive variant of the xpt-pbuX guanine riboswitch from Bacillus subtilis. The varying ability of these mutants to bind ligand as measured by isothermal titration calorimetry uncovered the conserved nucleotides whose identity is required for purine binding. Crystallographic analysis of the bound form of five mutants and chemical probing of their free state demonstrate that the identity of several universally conserved nucleotides is not essential for formation of the RNA-ligand complex but rather for maintaining a binding-competent form of the free RNA. These data show that conservation patterns in riboswitches arise from a combination of formation of the ligand-bound complex, promoting an open form of the free RNA, and participating in the secondary structural switch with the expression platform.

摘要

嘌呤核糖开关是常见于5'-非翻译区的多种mRNA元件之一,它能够通过直接结合小分子代谢物以顺式方式控制基因表达。对核糖开关的核碱基结合结构域(称为适体结构域)进行的广泛生化和结构分析表明,mRNA利用一个复杂折叠的三向连接基序识别其同源配体,该基序完全包裹住配体。嘌呤核碱基的高亲和力结合由腺嘌呤和鸟嘌呤核糖开关之间保守的远端环-环相互作用所促进。为了了解保守核苷酸在该RNA的三向连接和环-环相互作用中的作用,我们在来自枯草芽孢杆菌的xpt-pbuX鸟嘌呤核糖开关的腺嘌呤响应变体背景下,对这些元件进行了详细的诱变研究。通过等温滴定量热法测量这些突变体结合配体的不同能力,揭示了嘌呤结合所需的保守核苷酸的身份。对五个突变体的结合形式进行晶体学分析及其游离状态的化学探针实验表明,几个普遍保守的核苷酸的身份对于RNA-配体复合物的形成并非必不可少,而是对于维持游离RNA的结合活性形式至关重要。这些数据表明,核糖开关中的保守模式源于配体结合复合物的形成、促进游离RNA的开放形式以及与表达平台参与二级结构转换的综合作用。

相似文献

1
Mutational analysis of the purine riboswitch aptamer domain.
Biochemistry. 2007 Nov 20;46(46):13297-309. doi: 10.1021/bi700410g. Epub 2007 Oct 26.
2
Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
J Mol Biol. 2006 Jun 9;359(3):754-68. doi: 10.1016/j.jmb.2006.04.003. Epub 2006 Apr 21.
4
Ligand-dependent folding of the three-way junction in the purine riboswitch.
RNA. 2008 Apr;14(4):675-84. doi: 10.1261/rna.736908. Epub 2008 Feb 11.
5
Riboswitch structure: an internal residue mimicking the purine ligand.
Nucleic Acids Res. 2010 Apr;38(6):2057-68. doi: 10.1093/nar/gkp1080. Epub 2009 Dec 18.
6
Structural studies of the purine and SAM binding riboswitches.
Cold Spring Harb Symp Quant Biol. 2006;71:259-68. doi: 10.1101/sqb.2006.71.015.
9
Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
RNA Biol. 2012 May;9(5):672-80. doi: 10.4161/rna.20106. Epub 2012 May 1.
10

引用本文的文献

2
Mechanism of Ligand Discrimination by the Riboswitch.
J Chem Inf Model. 2023 Aug 14;63(15):4864-4874. doi: 10.1021/acs.jcim.3c00835. Epub 2023 Jul 24.
3
Disentangling contact and ensemble epistasis in a riboswitch.
Biophys J. 2023 May 2;122(9):1600-1612. doi: 10.1016/j.bpj.2023.01.033. Epub 2023 Jan 28.
4
Exploiting natural riboswitches for aptamer engineering and validation.
Nucleic Acids Res. 2023 Jan 25;51(2):966-981. doi: 10.1093/nar/gkac1218.
5
Dynamic docking of small molecules targeting RNA CUG repeats causing myotonic dystrophy type 1.
Biophys J. 2023 Jan 3;122(1):180-196. doi: 10.1016/j.bpj.2022.11.010. Epub 2022 Nov 8.
6
The Metabolome Weakens RNA Thermodynamic Stability and Strengthens RNA Chemical Stability.
Biochemistry. 2022 Nov 15;61(22):2579-2591. doi: 10.1021/acs.biochem.2c00488. Epub 2022 Oct 28.
9
Structural basis for 2'-deoxyguanosine recognition by the 2'-dG-II class of riboswitches.
Nucleic Acids Res. 2019 Nov 18;47(20):10931-10941. doi: 10.1093/nar/gkz839.

本文引用的文献

2
Structural studies of the purine and SAM binding riboswitches.
Cold Spring Harb Symp Quant Biol. 2006;71:259-68. doi: 10.1101/sqb.2006.71.015.
3
Mix-and-match riboswitches.
ACS Chem Biol. 2006 Dec 15;1(12):751-4. doi: 10.1021/cb600458w.
4
Core requirements of the adenine riboswitch aptamer for ligand binding.
RNA. 2007 Mar;13(3):339-50. doi: 10.1261/rna.142007. Epub 2007 Jan 2.
6
Empirical Bayes hierarchical models for regularizing maximum likelihood estimation in the matrix Gaussian Procrustes problem.
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18521-7. doi: 10.1073/pnas.0508445103. Epub 2006 Nov 27.
7
Non-coding RNAs: lost in translation?
Gene. 2007 Jan 15;386(1-2):1-10. doi: 10.1016/j.gene.2006.09.028. Epub 2006 Oct 10.
8
Modified pyrimidines specifically bind the purine riboswitch.
J Am Chem Soc. 2006 Nov 8;128(44):14214-5. doi: 10.1021/ja063645t.
10
Folding of the adenine riboswitch.
Chem Biol. 2006 Aug;13(8):857-68. doi: 10.1016/j.chembiol.2006.06.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验