Suppr超能文献

基于多尺度自动各向异性形态学高斯核的抗噪声图像边缘检测

Noise-Robust image edge detection based on multi-scale automatic anisotropic morphological Gaussian Kernels.

作者信息

Liang Lei, Chen Junming, Shi Jiawei, Zhang Kai, Zheng Xiaodong

机构信息

College of Arts, Nanjing University of Information Science and Technology, Nanjing, China.

Faculty of Humanities and Arts, Macau University of Science and Technology, Macau, China.

出版信息

PLoS One. 2025 May 5;20(5):e0319852. doi: 10.1371/journal.pone.0319852. eCollection 2025.

Abstract

This paper presents a novel multi-scale, noise-robust edge detection method that employs multi-scale automatic anisotropic morphological Gaussian kernels to extract edge maps from input images. It addresses the issue of cross-edge detection failure in the Canny edge detector. Compared to other edge detection methods, the proposed approach offers significant advantages in maintaining noise robustness while achieving high edge resolution and accuracy. The paper is structured into five key sections. First, we propose a multi-scale automatic anisotropic morphological directional derivative (AMDD) to capture local gray-level variations around each pixel at multiple scales. Second, a new fused edge strength map (ESM) is introduced based on the multi-scale AMDD. Third, we analyze why the Canny isotropic Gaussian kernel detector fails to detect cross edges. Additionally, the edge contour is extracted by incorporating the fused ESMs and the edge direction map (EDM), which are processed through spatial and directional matching filters, into the standard Canny detection framework. Finally, we evaluate the proposed method using precision-recall (PR) curves and Pratt's Figure of Merit (FOM). We compare its performance with existing state-of-the-art detectors on a standard dataset. Experimental results demonstrate that the proposed method effectively reduces noise, mitigates irrelevant signal interference, and smooths the image, showing competitive performance in edge detection tasks.

摘要

本文提出了一种新颖的多尺度、抗噪声边缘检测方法,该方法采用多尺度自动各向异性形态学高斯核从输入图像中提取边缘图。它解决了Canny边缘检测器中交叉边缘检测失败的问题。与其他边缘检测方法相比,该方法在保持噪声鲁棒性的同时,在实现高边缘分辨率和准确性方面具有显著优势。本文分为五个关键部分。首先,我们提出了一种多尺度自动各向异性形态学方向导数(AMDD),以在多个尺度上捕获每个像素周围的局部灰度变化。其次,基于多尺度AMDD引入了一种新的融合边缘强度图(ESM)。第三,我们分析了Canny各向同性高斯核检测器无法检测交叉边缘的原因。此外,通过将融合的ESM和边缘方向图(EDM)(通过空间和方向匹配滤波器处理)纳入标准Canny检测框架来提取边缘轮廓。最后,我们使用精确率-召回率(PR)曲线和普拉特优值(FOM)来评估所提出的方法。我们在标准数据集上将其性能与现有的最先进检测器进行比较。实验结果表明,该方法有效地降低了噪声,减轻了无关信号干扰,并平滑了图像,在边缘检测任务中表现出具有竞争力的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7492/12052157/d4b5f3c8f6cf/pone.0319852.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验