Suppr超能文献

用于高效CO还原的混合连接体金属有机框架中光敏化的多变量调谐

Multivariate Tuning of Photosensitization in Mixed-Linker Metal-Organic Frameworks for Efficient CO Reduction.

作者信息

Yin Ya, Feng Shijia, Xu Xinyu, Liu Yifan, Li Youcong, Gao Lei, Zhou Xiaocheng, Dong Jiahao, Wu Yulun, Su Jian, Zuo Jing-Lin, Yuan Shuai, Zhu Jia

机构信息

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.

National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.

出版信息

J Am Chem Soc. 2025 May 14;147(19):16481-16493. doi: 10.1021/jacs.5c02940. Epub 2025 May 5.

Abstract

Photosensitization is a powerful approach for enhancing the photocatalyst performance by improving light absorption, energy transfer, and charge separation. However, achieving high efficiency requires precise control over photosensitizers, catalytic centers, and their interactions, which remain challenging in heterogeneous systems. Herein, we develop multivariate zirconium metal-organic frameworks (MOFs) with mixing linkers and tunable defects that enable unprecedented control over photosensitizers, catalytic centers, and their ratios, creating an efficient platform for CO reduction. These MOFs integrate triphenylamine, phenoxazine, or phenothiazine-based linkers as photosensitizers and metal porphyrin linkers (metal = Fe, Co, Ni, and Zn) as CO reduction catalytic centers. Furthermore, the defect tolerance of robust Zr nodes allows for a systematic variation in linker ratios by introducing missing linker defects. By fine-tuning the photosensitizers, catalytic metal centers, and their ratios, we achieved an optimized photocatalyst with CO-to-CO reduction rates of 247.8 μmol g h, representing a 17-fold enhancement over homogeneous analogues. Transient spectra and density functional theory calculations reveal the critical role of the framework structure in promoting efficient intrareticular energy transfer and charge separation. This study highlights the unique advantage of MOF platforms in the multivariate tuning of photocatalysts, paving the way for advanced artificial photosynthetic systems.

摘要

光敏化是一种通过改善光吸收、能量转移和电荷分离来提高光催化剂性能的有效方法。然而,要实现高效则需要对光敏剂、催化中心及其相互作用进行精确控制,这在多相体系中仍然具有挑战性。在此,我们开发了具有混合连接体和可调缺陷的多元锆基金属有机框架(MOF),能够以前所未有的方式控制光敏剂、催化中心及其比例,从而创建了一个用于CO还原的高效平台。这些MOF将基于三苯胺、吩恶嗪或吩噻嗪的连接体作为光敏剂,并将金属卟啉连接体(金属 = Fe、Co、Ni和Zn)作为CO还原催化中心。此外,坚固的Zr节点的缺陷耐受性使得通过引入缺失连接体缺陷来系统地改变连接体比例成为可能。通过微调光敏剂、催化金属中心及其比例,我们获得了一种优化的光催化剂,其CO到CO的还原速率为247.8 μmol g h,比均相类似物提高了17倍。瞬态光谱和密度泛函理论计算揭示了框架结构在促进有效的网状内能量转移和电荷分离中的关键作用。这项研究突出了MOF平台在光催化剂多元调谐方面的独特优势,为先进的人工光合系统铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验