O'Sharkey Karl, Mitra Sanjali, Chow Ting, Thompson Laura, Su Jason, Cockburn Myles, Ritz Beate
Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California, USA.
Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA.
Environ Health Perspect. 2025 Jun;133(6):67010. doi: 10.1289/EHP15573. Epub 2025 Jun 12.
Autism spectrum disorder (ASD) is a neurodevelopmental condition with increasing prevalence worldwide. Air pollution may be a major contributor to the rise in ASD cases. This study investigated how the risk of ASD associated with prenatal and early postnatal exposure to specific air pollutants is modified by key sociodemographic factors, exploring vulnerable exposure periods.
We conducted a California population-based cohort study of 44,173 ASD cases among 2,371,379 children born between 2013 and 2018 (California birth registry), linked to California Department of Developmental Services (DDS) records to extract ASD diagnoses prior to the end of 2022. Prenatal and 1-year postnatal air pollution exposures [fine particulate matter with aerodynamic diameter (), nitrogen dioxide (), and ozone ()] were estimated using an advanced land-use regression (LUR) spatiotemporal model with machine learning. Logistic regression was used to estimate odds ratios and 95% confidence intervals for four models: single pollutant at a single period (prenatal or postnatal), multi-pollutant at a single period, single pollutant with dual periods (prenatal and postnatal), and multi-pollutant with dual time period co-adjustment, adjusting for relevant individual and regional covariates.
Prenatal and postnatal exposures increased ASD odds in all models. was associated with ASD pre- and postnatally in single and multi-pollutant models but only postnatally in dual time period models. In contrast, showed the opposite pattern of with slightly negative associations in single and multi-pollutant models that turned positive for the prenatal period in dual time period models. The postnatal effect was strongest among Black and Hispanic children, suggesting higher contributions from traffic-related exposures.
Exposure to specific air pollutants during pregnancy and in the postnatal periods is associated with an increased risk of ASD, with sociodemographic differences potentially highlighting exposure hot spots and sources as well as subpopulation vulnerabilities. https://doi.org/10.1289/EHP15573.
自闭症谱系障碍(ASD)是一种神经发育疾病,在全球范围内的患病率呈上升趋势。空气污染可能是ASD病例增加的主要原因。本研究调查了关键社会人口学因素如何改变产前和产后早期接触特定空气污染物与ASD风险之间的关联,探索了易受影响的暴露期。
我们对加利福尼亚州基于人群的队列进行了研究,该队列包括2013年至2018年出生的2371379名儿童中的44173例ASD病例(加利福尼亚州出生登记处),并与加利福尼亚州发展服务部(DDS)的记录相链接,以提取2022年底之前的ASD诊断信息。产前和产后1年的空气污染暴露[空气动力学直径小于等于2.5微米的细颗粒物(PM2.5)、二氧化氮(NO2)和臭氧(O3)]使用先进的土地利用回归(LUR)时空模型和机器学习进行估计。逻辑回归用于估计四个模型的比值比和95%置信区间:单个时期(产前或产后)的单一污染物、单个时期的多种污染物、两个时期(产前和产后)的单一污染物以及两个时期共同调整的多种污染物,并对相关的个体和区域协变量进行调整。
在所有模型中,产前和产后的PM2.5暴露均增加了患ASD的几率。在单一和多种污染物模型中,NO2在产前和产后均与ASD相关,但在两个时期模型中仅在产后与ASD相关。相比之下,O3呈现出与NO2相反的模式,在单一和多种污染物模型中呈略微负相关,而在两个时期模型中产前呈正相关。产后PM2.5的影响在黑人和西班牙裔儿童中最为强烈,表明与交通相关的暴露贡献更大。
孕期和产后接触特定空气污染物与ASD风险增加有关,社会人口学差异可能突出了暴露热点、来源以及亚人群的脆弱性。https://doi.org/10.1289/EHP15573 。