Suppr超能文献

重症监护病房的患者监护报警:自行操作指导的观察性研究。

Patient Monitoring Alarms in an Intensive Care Unit: Observational Study With Do-It-Yourself Instructions.

机构信息

Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.

Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.

出版信息

J Med Internet Res. 2021 May 28;23(5):e26494. doi: 10.2196/26494.

Abstract

BACKGROUND

As one of the most essential technical components of the intensive care unit (ICU), continuous monitoring of patients' vital parameters has significantly improved patient safety by alerting staff through an alarm when a parameter deviates from the normal range. However, the vast number of alarms regularly overwhelms staff and may induce alarm fatigue, a condition recently exacerbated by COVID-19 and potentially endangering patients.

OBJECTIVE

This study focused on providing a complete and repeatable analysis of the alarm data of an ICU's patient monitoring system. We aimed to develop do-it-yourself (DIY) instructions for technically versed ICU staff to analyze their monitoring data themselves, which is an essential element for developing efficient and effective alarm optimization strategies.

METHODS

This observational study was conducted using alarm log data extracted from the patient monitoring system of a 21-bed surgical ICU in 2019. DIY instructions were iteratively developed in informal interdisciplinary team meetings. The data analysis was grounded in a framework consisting of 5 dimensions, each with specific metrics: alarm load (eg, alarms per bed per day, alarm flood conditions, alarm per device and per criticality), avoidable alarms, (eg, the number of technical alarms), responsiveness and alarm handling (eg alarm duration), sensing (eg, usage of the alarm pause function), and exposure (eg, alarms per room type). Results were visualized using the R package ggplot2 to provide detailed insights into the ICU's alarm situation.

RESULTS

We developed 6 DIY instructions that should be followed iteratively step by step. Alarm load metrics should be (re)defined before alarm log data are collected and analyzed. Intuitive visualizations of the alarm metrics should be created next and presented to staff in order to help identify patterns in the alarm data for designing and implementing effective alarm management interventions. We provide the script we used for the data preparation and an R-Markdown file to create comprehensive alarm reports. The alarm load in the respective ICU was quantified by 152.5 (SD 42.2) alarms per bed per day on average and alarm flood conditions with, on average, 69.55 (SD 31.12) per day that both occurred mostly in the morning shifts. Most alarms were issued by the ventilator, invasive blood pressure device, and electrocardiogram (ie, high and low blood pressure, high respiratory rate, low heart rate). The exposure to alarms per bed per day was higher in single rooms (26%, mean 172.9/137.2 alarms per day per bed).

CONCLUSIONS

Analyzing ICU alarm log data provides valuable insights into the current alarm situation. Our results call for alarm management interventions that effectively reduce the number of alarms in order to ensure patient safety and ICU staff's work satisfaction. We hope our DIY instructions encourage others to follow suit in analyzing and publishing their ICU alarm data.

摘要

背景

作为重症监护病房(ICU)最重要的技术组成部分之一,通过在参数偏离正常范围时通过警报提醒工作人员,连续监测患者的生命参数显著提高了患者安全性。然而,大量的警报经常使工作人员不堪重负,并可能导致警报疲劳,这种情况最近因 COVID-19 而加剧,可能危及患者安全。

目的

本研究专注于对 ICU 患者监测系统的警报数据进行完整且可重复的分析。我们旨在为有技术经验的 ICU 工作人员提供自行分析监测数据的说明,这是制定高效有效的警报优化策略的重要组成部分。

方法

本观察性研究使用 2019 年从 21 张床位外科 ICU 的患者监测系统中提取的警报日志数据进行。在非正式的跨学科团队会议中,逐步制定 DIY 说明。数据分析基于由 5 个维度组成的框架,每个维度都有特定的指标:警报负载(例如,每床每天的警报数、警报泛滥情况、每个设备和每个关键程度的警报数)、可避免的警报数(例如,技术警报数)、响应能力和警报处理(例如,警报持续时间)、感测(例如,警报暂停功能的使用)和暴露(例如,每个房间类型的警报数)。使用 R 包 ggplot2 对结果进行可视化,以提供对 ICU 警报情况的详细了解。

结果

我们制定了 6 个 DIY 说明,应逐步迭代执行。在收集和分析警报日志数据之前,应重新定义警报负载指标。接下来,应创建直观的警报指标可视化效果,并将其呈现给工作人员,以帮助识别警报数据中的模式,从而设计和实施有效的警报管理干预措施。我们提供了用于数据准备的脚本和一个 R-Markdown 文件,以创建全面的警报报告。在各自的 ICU 中,平均每天每床发出 152.5(SD 42.2)个警报,平均每天有 69.55(SD 31.12)个警报泛滥情况,这两种情况主要发生在上午班次。大多数警报是由呼吸机、有创血压设备和心电图设备发出的(即高和低血压、高呼吸频率、低心率)。每张床每天的警报暴露量在单人房更高(26%,平均每床每天 172.9/137.2 个警报)。

结论

分析 ICU 警报日志数据可深入了解当前的警报情况。我们的结果呼吁采取有效的警报管理干预措施,以减少警报数量,从而确保患者安全和 ICU 工作人员的工作满意度。我们希望我们的 DIY 说明能够鼓励其他人分析和发布他们的 ICU 警报数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ba/8196351/591e80f5b949/jmir_v23i5e26494_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验