Takawale Rohan, Singh Deeksha, Nikam Vandana S
Department of Pharmacology, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India.
Indian J Pharmacol. 2025 Jan 1;57(1):12-20. doi: 10.4103/ijp.ijp_566_24. Epub 2025 May 6.
Our study investigated the impact of various cardiovascular drug on the cardiac physiology of zebrafish embryos and validated these findings in mice.
Cardiotoxicity has significantly contributed to the high drug attrition rate over the last two decades, underscoring the cardiac risk assessment in drug discovery and development. Although regulatory authority's guidelines specified the cell-based assays for the safety assessment of drugs, the current requirements fall short due to a lack of in vivo biology. The use of zebrafish experimental system has surged in developmental and pathophysiological investigation due to their striking resemblance to mammals. Hence, we used the zebrafish model system for cardiovascular drug studies and validated it in the mice model.
The zebrafish embryos of 72 hours post-fertilization (hpf) were exposed to different CVS drug and, recorded their heart rate, and further validated in mice.
We observed that exposure to amlodipine (a calcium channel blocker), atenolol (a class II antiarrhythmic), and amiodarone (a class III antiarrhythmic) led to dose-dependent reductions in heart rate in zebrafish embryos, with effects varying based on drug concentration and mechanism of action. Specifically, amiodarone treatment resulted in a dose-dependent decrease in heart rate (0.001-100 μM) and atrioventricular block starting at a 10 μM concentration. Each class of cardiovascular drug demonstrated unique cardiac effects in zebrafish embryos, reflecting similar patterns in mice treated with these drugs.
Our findings highlight the zebrafish model's utility for early-phase cardiac risk assessment in drug discovery due to its high throughput capabilities and other beneficial features.
我们的研究调查了各种心血管药物对斑马鱼胚胎心脏生理学的影响,并在小鼠中验证了这些发现。
在过去二十年中,心脏毒性是导致药物淘汰率高的重要原因,这凸显了药物研发过程中心脏风险评估的重要性。尽管监管机构的指南规定了基于细胞的药物安全性评估方法,但由于缺乏体内生物学信息,目前的要求仍存在不足。由于斑马鱼与哺乳动物有显著的相似性,其在发育和病理生理学研究中的应用激增。因此,我们使用斑马鱼模型系统进行心血管药物研究,并在小鼠模型中进行了验证。
将受精后72小时(hpf)的斑马鱼胚胎暴露于不同的心血管药物中,记录其心率,并在小鼠中进一步验证。
我们观察到,暴露于氨氯地平(一种钙通道阻滞剂)、阿替洛尔(一种II类抗心律失常药)和胺碘酮(一种III类抗心律失常药)会导致斑马鱼胚胎心率呈剂量依赖性降低,其影响因药物浓度和作用机制而异。具体而言,胺碘酮处理导致心率呈剂量依赖性降低(0.001 - 100 μM),且在浓度为10 μM时开始出现房室传导阻滞。每类心血管药物在斑马鱼胚胎中都表现出独特的心脏效应,在用这些药物处理的小鼠中也反映出类似的模式。
我们的研究结果突出了斑马鱼模型在药物发现早期心脏风险评估中的实用性,因其具有高通量能力和其他有益特性。