Suppr超能文献

从图像到洞察:用于菖蒲属植物切片精确识别和目标检测的深度学习解决方案

From image to insight deep learning solutions for accurate identification and object detection of Acorus species slices.

作者信息

Liu Yinghui, Liu Haitao, Li Linlan, Ding Ying

机构信息

Hunan Food and Drug Vocational College, Changsha, 410208, China.

Department of Pharmacy, Xiangya Hospital of Central South University, Changsha, 410008, China.

出版信息

Sci Rep. 2025 May 6;15(1):15734. doi: 10.1038/s41598-025-00038-x.

Abstract

Given the morphological similarity and medicinal efficacy differences between Acorus tatarinowii Rhizoma and Acorus calamus Rhizoma, both belonging to the Acorus rhizome slices, as well as the phenomenon of their mixed use in the market, this study aims to achieve high-precision classification and rapid object detection of these two Acorus Species Slices using deep learning technology, thus enhancing the accuracy and efficiency of Traditional Chinese Medicine (TCM) identification. The study constructed a high-quality dataset consisting of 1,928 rigorously preprocessed and annotated images of Acorus tatarinowii Rhizoma and Acorus calamus Rhizoma specimens. The ResNet50 model was employed for classification to improve classification accuracy. Furthermore, the YOLOv8 algorithm was utilized for object detection. Experimental results indicate that the ResNet50 model can accurately distinguish between Acorus tatarinowii Rhizoma and Acorus calamus Rhizoma decoction pieces, achieving a test set accuracy of 92.8%, thereby realizing precise classification. Meanwhile, the YOLOv8 algorithm achieved rapid object detection in mixed states of the two, with a detection accuracy of 98.6% and a detection frame rate of 22fps. Meanwhile, we innovatively integrate both channel attention (SE modules) and spatial attention into ResNet50 and YOLOv8 architectures, respectively, to enhance the model's ability to capture discriminative features of Acorus slices and provide a novel solution for real-time mixed-state detection.Compared to the baseline models, the SE module enhanced the classification accuracy of ResNet50 by 1.7%, while the spatial attention module improved the mAP50 of YOLOv8 by 1.2%, demonstrating the effectiveness of attention mechanisms in fine-grained identification of Chinese herbal materials.This study successfully applied deep learning technology to the classification and object detection of TCM decoction pieces, providing an effective means for intelligent identification and management of Chinese medicinal materials.

摘要

鉴于同属菖蒲类饮片的石菖蒲与水菖蒲在形态上相似但药用功效有差异,且市场上存在二者混用的现象,本研究旨在利用深度学习技术对这两种菖蒲类饮片实现高精度分类及快速目标检测,从而提高中药鉴定的准确性和效率。该研究构建了一个高质量数据集,包含1928张经过严格预处理和标注的石菖蒲与水菖蒲标本图像。采用ResNet50模型进行分类以提高分类准确率,此外,利用YOLOv8算法进行目标检测。实验结果表明,ResNet50模型能够准确区分石菖蒲与水菖蒲饮片,测试集准确率达到92.8%,从而实现了精确分类。同时,YOLOv8算法在二者混合状态下实现了快速目标检测,检测准确率为98.6%,检测帧率为22fps。同时,我们创新性地分别将通道注意力(SE模块)和空间注意力集成到ResNet50和YOLOv8架构中,以增强模型捕捉菖蒲饮片判别特征的能力,并为实时混合状态检测提供了一种新的解决方案。与基线模型相比,SE模块使ResNet50的分类准确率提高了1.7%,而空间注意力模块使YOLOv8的mAP50提高了1.2%,证明了注意力机制在中药材细粒度识别中的有效性。本研究成功将深度学习技术应用于中药饮片的分类和目标检测,为中药材的智能鉴定和管理提供了有效手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c26/12052821/ed4c901468d5/41598_2025_38_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验