Li Jieyang, Zhang Huanlei, Luo Changhao, Cheng Dongbo, Xu Wanping, Lin Meng
SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China.
Nat Commun. 2025 May 6;16(1):4181. doi: 10.1038/s41467-025-59604-6.
Electrochemical conversion of CO into fuels represents an important pathway for addressing the challenges of climate change and energy storage. However, large-scale applications remain hindered by the instability and inefficiency of CO reduction systems, particularly under highly alkaline electrolytes and high current densities. One primary obstacle is the cathodic salt precipitation, which hinders mass transfer and blocks active sites limiting the lifespan of these systems. Here, we present a non-isothermal strategy that leverages a thermal gradient across the membrane electrode assembly to enhance electrochemical performance and suppress salt precipitation. By maintaining a cooler cathode and warmer anode, we exploit the Soret effect to drive cations away from the cathode, mitigating salting-out while boosting anodic activity and cathodic CO solubility. The non-isothermal case has demonstrated over 200 h of stable operation at 100 mA cm under highly alkaline conditions, outperforming conventional isothermal systems. Techno-economic analysis reveals reductions in CO-to-CO production costs, supporting the scalability of this strategy. These findings enable the practical deployment of stable, high-efficiency CO electrolysis systems.
将二氧化碳电化学转化为燃料是应对气候变化和能量存储挑战的重要途径。然而,大规模应用仍然受到二氧化碳还原系统的不稳定性和低效率的阻碍,特别是在高碱性电解质和高电流密度下。一个主要障碍是阴极盐沉淀,它阻碍了传质并阻塞了活性位点,限制了这些系统的使用寿命。在此,我们提出了一种非等温策略,该策略利用膜电极组件上的热梯度来提高电化学性能并抑制盐沉淀。通过保持阴极较冷而阳极较热,我们利用索雷特效应将阳离子从阴极驱离,减轻盐析现象,同时提高阳极活性和阴极二氧化碳溶解度。非等温情况下在高碱性条件下于100 mA/cm² 时已实现超过200小时的稳定运行,性能优于传统等温系统。技术经济分析表明二氧化碳到一氧化碳的生产成本降低,支持了该策略的可扩展性。这些发现使得稳定、高效的二氧化碳电解系统能够实际部署。