Zhang Shao-Jian, Hao Junnan, Wu Han, Chen Qianru, Hu Yiyang, Zhao Xun, Qiao Shi-Zhang
School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia.
J Am Chem Soc. 2025 May 14;147(19):16350-16361. doi: 10.1021/jacs.5c02085. Epub 2025 May 5.
Aqueous zinc-iodine (Zn-I) batteries with four-electron (4e) I/I/I conversion (4eZIBs) offer high energy density but face significant challenges for application, including the polyiodide shuttle effect and I hydrolysis for the I cathodes and poor reversibility for the Zn anodes. Here, we report a coordination chemistry strategy to address these issues simultaneously by introducing hexamethylenetetramine (HMTA) as an electrolyte additive. In aqueous electrolytes, HMTA undergoes protonation to form positively charged nitrogen moieties that effectively precipitate the polyiodides and I species (ICl) to mitigate the polyiodides shuttle and I hydrolysis. This strategy enables 4eZIBs to achieve a near-theoretical specific capacity of 425 mA h g (based on the mass of iodine) and a Coulombic efficiency (CE) exceeding 99%. On the Zn anode, HMTA preferentially adsorbs onto its surface, inhibiting competitive water adsorption to suppress both Zn dendrite formation and hydrogen evolution. As a result, for the first time, we achieve durable 4eZIB performance in pouch-cell configurations with limited Zn supply. A 0.5 A h pouch cell with 15% Zn utilization exhibits a high energy density of 113.0 W h kg (based on the mass of cathodes and anodes) and excellent cycling stability for over 1400 cycles, highlighting the potential of 4eZIBs for next-generation energy storage systems.
具有四电子(4e)I/I/I转化的水系锌碘(Zn-I)电池(4eZIBs)具有高能量密度,但在应用上面临重大挑战,包括多碘化物穿梭效应、碘阴极的碘水解以及锌阳极的可逆性差。在此,我们报道一种配位化学策略,通过引入六亚甲基四胺(HMTA)作为电解质添加剂来同时解决这些问题。在水系电解质中,HMTA发生质子化形成带正电的氮基团,有效地沉淀多碘化物和碘物种(ICl),以减轻多碘化物穿梭和碘水解。该策略使4eZIBs能够实现接近理论比容量425 mA h g(基于碘的质量)和超过99%的库仑效率(CE)。在锌阳极上,HMTA优先吸附在其表面,抑制竞争性水吸附,从而抑制锌枝晶形成和析氢。结果,我们首次在锌供应有限的软包电池配置中实现了耐用的4eZIB性能。一个锌利用率为15%的0.5 A h软包电池表现出113.0 W h kg的高能量密度(基于阴极和阳极的质量)以及超过1400次循环的优异循环稳定性,突出了4eZIBs在下一代储能系统中的潜力。