Suppr超能文献

生物标志物能在多大程度上解释认知功能障碍和认知损害中的社会人口学不平等现象?来自健康与退休研究中一个机器学习模型的结果。

How much can biomarkers explain sociodemographic inequalities in cognitive dysfunction and cognitive impairment? Results from a machine learning model in the Health and Retirement Study.

作者信息

Klopack Eric T, Farina Mateo P, Thyagarajan Bharat, Faul Jessica D, Crimmins Eileen M

机构信息

Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.

Department of Human Development and Family Sciences, University of Texas at Austin, Austin, TX, USA.

出版信息

J Alzheimers Dis. 2025 Jul;106(1):54-68. doi: 10.1177/13872877251338063. Epub 2025 May 5.

Abstract

BackgroundBiomarkers may be pathways by which social adversity affects cognitive aging and Alzheimer's disease and related dementias (ADRD) risk.ObjectiveHow much variance in cognitive dysfunction and cognitive impairment onset do blood-based and physiological biomarkers provide above and beyond easily attainable sociodemographic variables, and how much can biomarkers explain differences in cognitive functioning and ADRD by sociodemographic variables?MethodsWe utilize machine learning to generate measures of predicted cognitive dysfunction and cognitive impairment incidence based on 91 biomarkers, identify the relative importance of each biomarker, and examine how much these biomarkers mediate sociodemographic differences.ResultsMarkers related to cellular aging, neurodegeneration, diet and nutrition, immune functioning, and lung function were identified as important. Biomarkers mediated 47.2-77.3% of the variance associated with age, 22.7-35.2% of racial/ethnic differences in cognitive dysfunction, and 12.5-17.6% of educational differences.ConclusionsBiomarkers provide the potential to understand pathways linking sociodemographic characteristics to cognitive functioning and health. Future research should consider additional biomarkers and evaluate the specific systems that put people at risk for cognitive impairment.

摘要

背景

生物标志物可能是社会逆境影响认知衰老以及患阿尔茨海默病和相关痴呆症(ADRD)风险的途径。

目的

基于血液的生物标志物和生理生物标志物在认知功能障碍和认知障碍发病方面,相较于容易获取的社会人口统计学变量,能额外解释多少方差?生物标志物能在多大程度上解释社会人口统计学变量在认知功能和ADRD方面的差异?

方法

我们利用机器学习,基于91种生物标志物生成预测认知功能障碍和认知障碍发病率的指标,确定每种生物标志物的相对重要性,并研究这些生物标志物在多大程度上介导了社会人口统计学差异。

结果

与细胞衰老、神经退行性变、饮食与营养、免疫功能和肺功能相关的标志物被确定为重要标志物。生物标志物介导了与年龄相关方差的47.2 - 77.3%、认知功能障碍中种族/民族差异的22.7 - 35.2%以及教育差异的12.5 - 17.6%。

结论

生物标志物为理解将社会人口统计学特征与认知功能和健康联系起来的途径提供了可能。未来的研究应考虑更多生物标志物,并评估使人们面临认知障碍风险的具体系统。

相似文献

本文引用的文献

6
Riding the merry-go-round of racial disparities in ADRD research.在 ADDR 研究中体验种族差异的旋转木马。
Alzheimers Dement. 2023 Oct;19(10):4735-4742. doi: 10.1002/alz.13359. Epub 2023 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验