Hanafy Belal I, Munson Michael J, Soundararajan Ramesh, Pereira Sara, Gallud Audrey, Sanaullah Sajib Md, Carlesso Gianluca, Mazza Mariarosa
Advanced Drug Delivery, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, CB2 0AA, United Kingdom.
Advanced Drug Delivery, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Sweden.
Adv Healthc Mater. 2025 May 6:e2500383. doi: 10.1002/adhm.202500383.
Lipid nanoparticles (LNPs) have gained significant attention as effective nucleic acid delivery vehicles. Despite their success, LNPs are predominantly liver-targeted which limits their broader application. To expand the therapeutic potential of LNPs, this work implements a data-driven approach that combines design of experiments (DoE), high throughput screening (HTS), and machine learning (ML) to tailor LNP formulations for preferential immune cell targeting. This methodology involves the generation of 180 LNP formulations, with varying lipid molar ratios and lipid chemistries, to explore a diverse design space. This work aims to identify LNP properties that enhance immune cell specificity while reducing hepatic uptake. The in vitro screening of these LNPs provided a rich dataset for ML analysis, leading to the identification of promising candidates with improved immune cellular selectivity profiles. These findings are validated in vivo where it is demonstrated that selected LNPs achieved preferential spleen expression with a successful redirection of LNP tropism beyond hepatic cells. This workflow highlights the importance of tailoring LNP compositions for the development of LNPs with selective cellular tropism.
脂质纳米颗粒(LNPs)作为有效的核酸递送载体已受到广泛关注。尽管取得了成功,但LNPs主要靶向肝脏,这限制了它们的更广泛应用。为了扩大LNPs的治疗潜力,本研究采用了一种数据驱动的方法,该方法结合了实验设计(DoE)、高通量筛选(HTS)和机器学习(ML),以定制用于优先靶向免疫细胞的LNP制剂。该方法涉及生成180种LNP制剂,具有不同的脂质摩尔比和脂质化学组成,以探索多样化的设计空间。本研究旨在确定能够增强免疫细胞特异性同时减少肝脏摄取的LNP特性。对这些LNPs的体外筛选为ML分析提供了丰富的数据集,从而确定了具有改善的免疫细胞选择性特征的有前景的候选物。这些发现在体内得到了验证,结果表明所选的LNPs实现了优先的脾脏表达,成功地将LNP的趋向性从肝细胞转向其他细胞。该工作流程突出了为开发具有选择性细胞趋向性的LNPs而定制LNP组成的重要性。