Dudas Balint, Athanasiou Christina, Mobarec Juan Carlos, Rosta Edina
Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K.
Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States.
J Chem Theory Comput. 2025 Jun 10;21(11):5712-5723. doi: 10.1021/acs.jctc.5c00064. Epub 2025 May 6.
Molecular glues represent a novel therapeutic modality facilitating the stabilization of protein-protein interactions (PPIs), thus enabling the targeting of previously "undruggable" proteins. We develop a computational procedure to screen for molecular glues using a pathway-independent free energy calculation method for accurately assessing the cooperativity. We employ a combined ligand and protein free energy perturbation (FEP) method to calculate the cooperative effect of a ligand for ternary binding. We study the cooperative binding mechanisms of molecular glue degraders, specifically cereblon (CRBN) modulators targeting Ikaros family zinc finger 2 (IKZF2), a transcription factor implicated in cancer immunotherapy. We present a comprehensive computational protocol for screening large molecular libraries to identify potent molecular glues. By leveraging cooperative binding principles in ternary complex formation, our approach effectively predicts ligand-induced PPIs and their degradation potential. Benchmarking against experimental data for CRBN-Ikaros complexes, our protocol demonstrates high accuracy in identifying superior molecular glues, highlighting L4 and L5 as top performers. Furthermore, our high-throughput screening identified novel candidates from extensive chemical libraries, validated through advanced FEP+ simulations. This study not only underscores the transformative potential of molecular glues in targeted protein degradation but also sets the stage for their broader application across diverse protein targets, paving the way for innovative therapeutic strategies in drug discovery.
分子胶代表了一种新型治疗方式,可促进蛋白质-蛋白质相互作用(PPI)的稳定,从而能够靶向先前“不可成药”的蛋白质。我们开发了一种计算程序,使用与途径无关的自由能计算方法来筛选分子胶,以准确评估协同性。我们采用配体和蛋白质自由能微扰(FEP)相结合的方法来计算配体对三元结合的协同效应。我们研究了分子胶降解剂的协同结合机制,特别是针对伊卡洛斯家族锌指蛋白2(IKZF2)的大脑神经酰胺酶(CRBN)调节剂,IKZF2是一种与癌症免疫治疗有关的转录因子。我们提出了一个全面的计算方案,用于筛选大分子文库以识别有效的分子胶。通过利用三元复合物形成中的协同结合原理,我们的方法有效地预测了配体诱导的PPI及其降解潜力。以CRBN-伊卡洛斯复合物的实验数据为基准,我们的方案在识别优质分子胶方面显示出高精度,突出了L4和L5作为最佳表现者。此外,我们的高通量筛选从广泛的化学文库中鉴定出了新的候选物,并通过先进的FEP+模拟进行了验证。这项研究不仅强调了分子胶在靶向蛋白质降解中的变革潜力,也为其在不同蛋白质靶点上的更广泛应用奠定了基础,为药物发现中的创新治疗策略铺平了道路。