Suppr超能文献

用于实现高速率气相电化学转化的工程化流通式中空纤维气体扩散电极

Engineering Flow-Through Hollow Fiber Gas-Diffusion Electrodes for Unlocking High-Rate Gas-Phase Electrochemical Conversion.

作者信息

Chen Guoliang, Rabiee Hesamoddin, Li Mengran, Ma Beibei, Kuang Yizhu, Dorosti Fatereh, Zhu Zhonghua, Wang Hao, Ge Lei

机构信息

Centre for Future Materials, University of Southern Queensland, Springfield, QLD, 4300, Australia.

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, 3012, Switzerland.

出版信息

Adv Mater. 2025 Jul;37(28):e2420391. doi: 10.1002/adma.202420391. Epub 2025 May 6.

Abstract

Designing advanced electrodes with efficient contact with gas, electrolytes, and catalysts presents significant opportunities to enhance the accessibility of concentrated gas molecules to the catalytic sites while mitigating undesirable side reactions such as the hydrogen evolution reaction (HER), which advances the gas-phase electrochemical reduction toward industrial-scale applications. Traditional planar electrodes face challenges, including limited gas solubility and restricted mass transport. Although commercial flow-by gas-diffusion electrodes can reduce mass transfer resistance by enabling direct diffusion of gas molecules to active sites, the reliance on diffusive gas flow becomes insufficient to meet the rapid consumption demands of gas reactants at high current density. Flow-through hollow fiber gas-diffusion electrodes (HFGDEs) or hollow fiber gas penetration electrodes (HFGPEs) provide a promising solution by continuously delivering convective gas flow to active sites, resulting in enhanced mass transport and superior gas accessibility near the catalytic sites. Notably, HFGDEs have demonstrated the ability to achieve current densities exceeding multiple amperes per square centimeter in liquid electrolytes. This review provides a comprehensive overview of the design criteria, fabrication methods, and design strategies for porous metallic HFGDEs. It highlights the state-of-the-art advancements in HFGDEs composed of various metals (e.g., Cu, Ni, Ag, Bi, Ti, and Zn), with a particular focus on their utilization in the electrochemical conversion of CO. Finally, future research directions are discussed, underscoring the potential of porous metallic HFGDEs as a versatile and scalable electrode architecture for diverse electrochemical applications.

摘要

设计与气体、电解质和催化剂具有高效接触的先进电极,为提高浓缩气体分子与催化位点的可及性提供了重大机遇,同时减少诸如析氢反应(HER)等不良副反应,这推动了气相电化学还原向工业规模应用发展。传统的平面电极面临挑战,包括气体溶解度有限和传质受限。尽管商用的流通式气体扩散电极可以通过使气体分子直接扩散到活性位点来降低传质阻力,但在高电流密度下,对扩散气流的依赖已不足以满足气体反应物的快速消耗需求。流通式中空纤维气体扩散电极(HFGDEs)或中空纤维气体渗透电极(HFGPEs)通过向活性位点连续输送对流气流提供了一个有前景的解决方案,从而增强传质并提高催化位点附近的气体可及性。值得注意的是,HFGDEs已证明能够在液体电解质中实现超过每平方厘米数安培的电流密度。本综述全面概述了多孔金属HFGDEs的设计标准、制造方法和设计策略。它突出了由各种金属(如铜、镍、银、铋、钛和锌)组成的HFGDEs的最新进展,特别关注它们在CO电化学转化中的应用。最后,讨论了未来的研究方向,强调了多孔金属HFGDEs作为一种适用于多种电化学应用的通用且可扩展电极结构的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc14/12272035/00c5df5aeb2d/ADMA-37-2420391-g012.jpg

相似文献

1
2
Facet-oriented SnO@Ni hollow fiber enables ampere-level CO electroreduction to formate with 85% single-pass conversion.
Innovation (Camb). 2025 Feb 22;6(6):100844. doi: 10.1016/j.xinn.2025.100844. eCollection 2025 Jun 2.
3
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
4
Fundamental Insights for Practical Electrocatalytic CO Reduction.
Acc Chem Res. 2025 Aug 5;58(15):2365-2378. doi: 10.1021/acs.accounts.5c00154. Epub 2025 Jul 7.
5
GDE Stability in CO Electroreduction to Formate: The Role of Ionomer Type and Loading.
ACS Catal. 2025 May 9;15(11):8753-8767. doi: 10.1021/acscatal.5c02052. eCollection 2025 Jun 6.

本文引用的文献

1
Facet-oriented SnO@Ni hollow fiber enables ampere-level CO electroreduction to formate with 85% single-pass conversion.
Innovation (Camb). 2025 Feb 22;6(6):100844. doi: 10.1016/j.xinn.2025.100844. eCollection 2025 Jun 2.
3
Chlorine-Doped SnO Nanoflowers on Nickel Hollow Fiber for Enhanced CO Electroreduction at Ampere-Level Current Densities.
Angew Chem Int Ed Engl. 2025 Mar 24;64(13):e202423370. doi: 10.1002/anie.202423370. Epub 2025 Jan 16.
4
The Development, Essence and Perspective of Nitrogen Reduction to Ammonia.
Adv Mater. 2025 Jan;37(1):e2410909. doi: 10.1002/adma.202410909. Epub 2024 Nov 12.
5
In-situ Reconstruction of Catalyst in Electrocatalysis.
Adv Mater. 2024 Dec;36(50):e2411688. doi: 10.1002/adma.202411688. Epub 2024 Oct 22.
7
A Review on the Influence of Crystal Facets on the Product Selectivity of CORR over Cu Metal Catalysts.
ACS Nano. 2024 Aug 20;18(33):21714-21746. doi: 10.1021/acsnano.4c05326. Epub 2024 Aug 10.
9
Tensile-Strained Cu Penetration Electrode Boosts Asymmetric C-C Coupling for Ampere-Level CO-to-C Reduction in Acid.
Angew Chem Int Ed Engl. 2024 Oct 7;63(41):e202407612. doi: 10.1002/anie.202407612. Epub 2024 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验