Chen Guoliang, Rabiee Hesamoddin, Li Mengran, Ma Beibei, Kuang Yizhu, Dorosti Fatereh, Zhu Zhonghua, Wang Hao, Ge Lei
Centre for Future Materials, University of Southern Queensland, Springfield, QLD, 4300, Australia.
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, 3012, Switzerland.
Adv Mater. 2025 Jul;37(28):e2420391. doi: 10.1002/adma.202420391. Epub 2025 May 6.
Designing advanced electrodes with efficient contact with gas, electrolytes, and catalysts presents significant opportunities to enhance the accessibility of concentrated gas molecules to the catalytic sites while mitigating undesirable side reactions such as the hydrogen evolution reaction (HER), which advances the gas-phase electrochemical reduction toward industrial-scale applications. Traditional planar electrodes face challenges, including limited gas solubility and restricted mass transport. Although commercial flow-by gas-diffusion electrodes can reduce mass transfer resistance by enabling direct diffusion of gas molecules to active sites, the reliance on diffusive gas flow becomes insufficient to meet the rapid consumption demands of gas reactants at high current density. Flow-through hollow fiber gas-diffusion electrodes (HFGDEs) or hollow fiber gas penetration electrodes (HFGPEs) provide a promising solution by continuously delivering convective gas flow to active sites, resulting in enhanced mass transport and superior gas accessibility near the catalytic sites. Notably, HFGDEs have demonstrated the ability to achieve current densities exceeding multiple amperes per square centimeter in liquid electrolytes. This review provides a comprehensive overview of the design criteria, fabrication methods, and design strategies for porous metallic HFGDEs. It highlights the state-of-the-art advancements in HFGDEs composed of various metals (e.g., Cu, Ni, Ag, Bi, Ti, and Zn), with a particular focus on their utilization in the electrochemical conversion of CO. Finally, future research directions are discussed, underscoring the potential of porous metallic HFGDEs as a versatile and scalable electrode architecture for diverse electrochemical applications.
设计与气体、电解质和催化剂具有高效接触的先进电极,为提高浓缩气体分子与催化位点的可及性提供了重大机遇,同时减少诸如析氢反应(HER)等不良副反应,这推动了气相电化学还原向工业规模应用发展。传统的平面电极面临挑战,包括气体溶解度有限和传质受限。尽管商用的流通式气体扩散电极可以通过使气体分子直接扩散到活性位点来降低传质阻力,但在高电流密度下,对扩散气流的依赖已不足以满足气体反应物的快速消耗需求。流通式中空纤维气体扩散电极(HFGDEs)或中空纤维气体渗透电极(HFGPEs)通过向活性位点连续输送对流气流提供了一个有前景的解决方案,从而增强传质并提高催化位点附近的气体可及性。值得注意的是,HFGDEs已证明能够在液体电解质中实现超过每平方厘米数安培的电流密度。本综述全面概述了多孔金属HFGDEs的设计标准、制造方法和设计策略。它突出了由各种金属(如铜、镍、银、铋、钛和锌)组成的HFGDEs的最新进展,特别关注它们在CO电化学转化中的应用。最后,讨论了未来的研究方向,强调了多孔金属HFGDEs作为一种适用于多种电化学应用的通用且可扩展电极结构的潜力。