Wei Yiheng, Wang Xiaotong, Mao Jianing, Song Yanfang, Zhu Huanyi, Liu Xiaohu, Luo Cheng, Li Shoujie, Chen Aohui, Li Guihua, Dong Xiao, Wei Wei, Chen Wei
CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201203, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Angew Chem Int Ed Engl. 2025 Mar 24;64(13):e202423370. doi: 10.1002/anie.202423370. Epub 2025 Jan 16.
Renewable energy-driven electrochemical CO reduction has emerged as a promising technology for a sustainable future. However, achieving efficient production of storable liquid fuels at ampere-level current densities remains a significant hurdle in the large-scale implementation of CO electroreduction. Here we report a novel catalytic electrode comprising chlorine-doped SnO nanoflowers arrayed on the exterior of three-dimensional nickel hollow fibers. This electrode demonstrates exceptional electrocatalytic performance for converting CO to formate, achieving a remarkable formate selectivity of 99 % and a CO single-pass conversion rate of 93 % at 2 A cm. Furthermore, it exhibits excellent stability, maintaining a formate selectivity of above 94 % for 520 h at a current density of 3 A cm. Experimental results combined with theoretical calculations confirm that the enhanced mass transfer facilitated by the hollow fiber penetration effect, coupled with the well-retained Sn species and Sn-Cl bonds, synergistically elevates the activity of CO conversion. The incorporation of chlorine into SnO enhances electron transport and CO adsorption, substantially lowering the reaction energy barrier for the crucial intermediate *OCHO formation, and boosting the formate production.
可再生能源驱动的电化学CO还原已成为实现可持续未来的一项有前景的技术。然而,在安培级电流密度下实现可储存液体燃料的高效生产仍然是CO电还原大规模应用中的一个重大障碍。在此,我们报道了一种新型催化电极,它由排列在三维镍空心纤维外部的氯掺杂SnO纳米花组成。该电极在将CO转化为甲酸盐方面表现出卓越的电催化性能,在2 A cm时实现了99%的显著甲酸盐选择性和93%的CO单程转化率。此外,它还具有出色的稳定性,在3 A cm的电流密度下,甲酸盐选择性在520 h内保持在94%以上。实验结果与理论计算相结合证实,空心纤维渗透效应促进了传质增强,再加上保留良好的Sn物种和Sn-Cl键,协同提高了CO转化活性。氯掺入SnO增强了电子传输和CO吸附,大幅降低了关键中间体*OCHO形成的反应能垒,并促进了甲酸盐的生成。