用于细胞外电子转移的生物电化学交叉阵列架构筛选平台(BiCASP)。
A Bioelectrochemical Crossbar Architecture Screening Platform (BiCASP) for Extracellular Electron Transfer.
作者信息
Suresh Hasika, Bird Presley, Saha Kundan, Devaraj Surya Varchasvi, Asci Cihan, Truong Albert, Wallman Cooper, Patel Rhea, Sharma Atul, Carpenter Matthew D, Bontapalle Sujitkumar, Verduzco Rafael, Silberg Jonathan J, Sonkusale Sameer
出版信息
bioRxiv. 2025 Jul 9:2025.07.09.663982. doi: 10.1101/2025.07.09.663982.
UNLABELLED
Electroactive microbes can be used as components in electrical devices to leverage their unique behavior for biotechnology, but they remain challenging to engineer because the bioelectrochemical systems (BES) used for characterization are low-throughput. To overcome this challenge, we describe the development of the Bioelectrochemical Crossbar Architecture Screening Platform (BiCASP), which allows for samples to be arrayed and characterized in individually addressable microwells. This device reliably reports on the current generated by electroactive bacteria on the minute time scale, decreasing the time for data acquisition by several orders of magnitude compared to conventional BES. Also, this device increased the throughput of screening engineered biological components in cells, quickly identifying mutants of the membrane protein wire MtrA in that retain the ability to support extracellular electron transfer (EET). BiCASP is expected to enable the design of new components for bioelectronics by supporting directed evolution of electroactive proteins.
THE BIGGER PICTURE
Devices that interface microbes and materials, known as bioelectronics, can be used to sense environmental chemicals in real time, generate energy from sugars, and synthesize chemicals. While these devices leverage the unique capabilities of living systems as components in devices, such as their ability to convert chemical information in the environment into electrical information at the cell surface, it remains challenging to engineer these cellular components and their biomolecules for new applications, largely because commercially available bioelectrochemical systems for monitoring current generated by electroactive microbes are costly and require large culture volumes, needs continuous monitoring for days to obtain stable signals, and multichannel potentiostats to monitor multiple microbes in parallel.To overcome these challenges, we created the Bioelectrochemical Crossbar Architecture Screening Platform or BiCASP that is easy to fabricate, enables parallel analysis of microbial samples in flexible arrayed formats, and yields a stable signal on the minute time scale. This device is expected to enable the application of combinatorial protein engineering methods, such as directed evolution, to proteins that control microbial current production, by allowing for fast screening of cells expressing protein mutant libraries. As a proof-of-concept, we demonstrate that this device can screen for cells that express mutants of decaheme cytochromes that retain the ability to electrically connect cells to electrodes. This device will simplify the engineering of cells and proteins that function as electrical switches as well as the diversification of bioelectronic devices for real-time sensing of chemicals in the environment.Furthermore, BiCASP is promising as a high-throughput screening (HTS) platform, enabling rapid, parallel analysis of cellular and molecular interactions of diverse biological systems through label-free electrochemical methods. Such capabilities could transform drug discovery, personalized medicine, and functional genomics, supporting systematic genetic and chemical screens even at single-cell resolution.
HIGHLIGHTS
A high-throughput screening platform with individual addressabilityA device with a flexible crossbar architecture that simplifies current analysisReproducible detection of real-time cellular current on the minute time scaleThe device can be used to screen a library for cells with functional protein wires.
未标记
电活性微生物可作为电气设备的组件,利用其独特行为服务于生物技术,但对其进行工程改造仍具有挑战性,因为用于表征的生物电化学系统(BES)通量较低。为克服这一挑战,我们描述了生物电化学交叉阵列架构筛选平台(BiCASP)的开发,该平台允许在可单独寻址的微孔中对样品进行阵列排列和表征。该设备能在分钟时间尺度上可靠地报告电活性细菌产生的电流,与传统BES相比,将数据采集时间减少了几个数量级。此外,该设备提高了筛选细胞中工程化生物组件的通量,能够快速识别膜蛋白导线MtrA的突变体,这些突变体保留了支持细胞外电子转移(EET)的能力。预计BiCASP将通过支持电活性蛋白的定向进化,实现生物电子学新组件的设计。
更宏观的情况
连接微生物和材料的设备,即生物电子学设备,可以用于实时感知环境化学物质、从糖类中产生能量以及合成化学物质。虽然这些设备利用了生命系统作为设备组件的独特能力,比如它们能够在细胞表面将环境中的化学信息转化为电信息,但要对这些细胞组件及其生物分子进行工程改造以用于新应用仍然具有挑战性,这主要是因为用于监测电活性微生物产生电流的市售生物电化学系统成本高昂,需要大量培养体积,需要连续监测数天才能获得稳定信号,并且需要多通道恒电位仪来并行监测多个微生物。为克服这些挑战,我们创建了生物电化学交叉阵列架构筛选平台或BiCASP,它易于制造,能够以灵活的阵列形式对微生物样品进行并行分析,并在分钟时间尺度上产生稳定信号。预计该设备将通过允许快速筛选表达蛋白质突变体文库的细胞,使组合蛋白质工程方法(如定向进化)应用于控制微生物电流产生的蛋白质。作为概念验证,我们证明该设备可以筛选出表达十铁细胞色素突变体的细胞,这些突变体保留了将细胞与电极电连接的能力。该设备将简化作为电开关起作用的细胞和蛋白质的工程设计,以及用于实时感知环境中化学物质的生物电子设备的多样化。此外,BiCASP有望成为一个高通量筛选(HTS)平台,通过无标记电化学方法实现对各种生物系统的细胞和分子相互作用的快速、并行分析。这样的能力可以改变药物发现、个性化医疗和功能基因组学,甚至支持单细胞分辨率下的系统遗传和化学筛选。
亮点
具有单独寻址能力的高通量筛选平台
一种具有灵活交叉阵列架构的设备,简化了电流分析
在分钟时间尺度上可重复检测实时细胞电流
该设备可用于筛选具有功能性蛋白质导线的细胞文库