Bharat Bansod Sneha, Chrungoo Shreya, Verma Devendra, Babu Anju R
Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India.
Environ Sci Pollut Res Int. 2025 May;32(21):12767-12779. doi: 10.1007/s11356-025-36459-4. Epub 2025 May 6.
In the current study, the radical scavenging activity and cytotoxicity of reduced graphene oxide (rGO), mediated by titanium dioxide (TiO) nanocomposite, have been explored. The sol-gel method was utilized to synthesize TiO nanoparticles without surfactants, and the improved Hummer's method for the graphene oxide (GO) was followed by the thermal reduction method to obtain rGO. The single-step hydrothermal process was utilized for the synthesis of GO@TiO and rGO@TiO nanocomposites. Fourier transform infrared spectrum, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HR-TEM), and Raman spectrum of the nanocomposites were investigated. XRD and Raman spectra confirm the anatase phase TiO formation on the 2D layer of the rGO nanosheet. FESEM and HR-TEM confirmed the spherical TiO with a 6.75 ± 1.42 nm diameter decorated on a 2D rGO nanosheet. The rGO@TiO (91.18%) exhibited higher antioxidant properties than the GO@TiO (70.00%) nanocomposite at 400 µg/mL concentration, evaluated by the DPPH method. Moreover, the nanocomposite exhibits stronger scavenger activity towards the hole scavenger than the electron scavenger. The rGO@TiO nanocomposite showed less cytotoxicity towards L929 cells compared to TiO nanoparticles, GO, rGO, and GO@TiO. The antibacterial properties of the rGO against Staphylococcus aureus bacteria were enhanced by adding TiO nanoparticles. Thus, the results support the potential antioxidant properties of rGO-based nanocomposites that can be explored for biomedical and environmental applications.
在当前研究中,已对由二氧化钛(TiO)纳米复合材料介导的还原氧化石墨烯(rGO)的自由基清除活性和细胞毒性进行了探究。采用溶胶 - 凝胶法在无表面活性剂的情况下合成TiO纳米颗粒,通过改进的Hummer法制备氧化石墨烯(GO),随后采用热还原法获得rGO。采用单步水热法合成GO@TiO和rGO@TiO纳米复合材料。对纳米复合材料进行了傅里叶变换红外光谱、X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、高分辨率透射电子显微镜(HR - TEM)和拉曼光谱研究。XRD和拉曼光谱证实了在rGO纳米片的二维层上形成了锐钛矿相TiO。FESEM和HR - TEM证实了直径为6.75±1.42 nm的球形TiO装饰在二维rGO纳米片上。通过DPPH法评估,在400 μg/mL浓度下,rGO@TiO(91.18%)比GO@TiO(70.00%)纳米复合材料表现出更高的抗氧化性能。此外,该纳米复合材料对空穴清除剂的清除活性比对电子清除剂的更强。与TiO纳米颗粒、GO、rGO和GO@TiO相比,rGO@TiO纳米复合材料对L929细胞的细胞毒性更小。通过添加TiO纳米颗粒增强了rGO对金黄色葡萄球菌的抗菌性能。因此,结果支持了基于rGO的纳米复合材料在生物医学和环境应用中可探索的潜在抗氧化性能。