Ai Zhou, Zhang Huafeng, Cheng Shubo, Yi Zao, Song Qianju
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China.
School of Mathematics and Science, Southwest University of Science and Technology, Mianyang 621010, China.
Dalton Trans. 2025 May 27;54(21):8695-8705. doi: 10.1039/d5dt00311c.
This study utilizes thermochromic phase change materials VO and GST to design micro-nano structures with temperature-tunable thermal emission characteristics, further controlling their stealth effects in both visible light and infrared backgrounds. Initially, an infrared stealth structure based on GST is proposed. By exploring its crystalline (cGST) and amorphous (aGST) states, the optimal thickness of GST is determined to be 250 nm. The structures corresponding to aGST and cGST exhibit emissions of 0.24 and 0.24, respectively, in the atmospheric window of 3-5 μm and 0.03 and 0.15 at 8-14 μm. These low emission capabilities aid in achieving infrared stealth. In the non-atmospheric window of 5-8 μm, the emissions are 0.06 and 0.76, which can help reduce heat loss at low temperatures and radiate energy at high temperatures, thus optimizing the stealth effect. Subsequently, a ZnS layer is added on top to regulate the structural color. By scanning the thickness of ZnS in different states of GST, we investigate the chromaticity coordinates of the structure in amorphous, crystalline, and mixed states with varying crystal proportions. From the perspective of infrared emissivity, the feasibility of visible light stealth is studied. A ZnS layer thickness of 150 nm is selected as the optimal parameter, determining the infrared emissivity for both states. The structures corresponding to aGST and cGST exhibit emissions of 0.17 and 0.22 in the atmospheric window of 3-5 μm and 0.03 and 0.20 at 8-14 μm. The low emission capabilities help achieve infrared stealth, while the emissions within the non-atmospheric window of 5-8 μm are 0.10 and 0.77. The reasons for resonance absorption are explained by calculating the normalized electric field and energy dissipation intensity. Finally, a VO layer is added. Due to the reversible nature of the VO phase change, two phase change materials at different temperatures result in four states. The thickness of the VO layer is varied to explore the infrared emissivity in different states. This study primarily focuses on designing dynamically tunable micro-nano structures by combining phase change materials, achieving precise control over reflection and emission characteristics in both visible light and infrared bands, thus providing more possibilities for stealth technology.
本研究利用热致变色相变材料VO和GST来设计具有温度可调热发射特性的微纳结构,进一步控制其在可见光和红外背景下的隐身效果。首先,提出了一种基于GST的红外隐身结构。通过探索其晶态(cGST)和非晶态(aGST),确定GST的最佳厚度为250nm。对应aGST和cGST的结构在3 - 5μm大气窗口的发射率分别为0.24和0.24,在8 - 14μm处分别为0.03和0.15。这些低发射能力有助于实现红外隐身。在5 - 8μm的非大气窗口中,发射率为0.06和0.76,这有助于在低温下减少热损失,在高温下辐射能量,从而优化隐身效果。随后,在顶部添加ZnS层来调节结构颜色。通过扫描不同GST状态下ZnS的厚度,研究了非晶态、晶态和不同晶体比例混合态结构的色度坐标。从红外发射率的角度研究了可见光隐身的可行性。选择150nm的ZnS层厚度作为最佳参数,确定两种状态下的红外发射率。对应aGST和cGST的结构在3 - 5μm大气窗口的发射率分别为0.17和0.22,在8 - 14μm处分别为0.03和0.20。低发射能力有助于实现红外隐身,而在5 - 8μm非大气窗口内的发射率为0.10和0.77。通过计算归一化电场和能量耗散强度来解释共振吸收的原因。最后,添加VO层。由于VO相变的可逆性,两种不同温度的相变材料导致四种状态。改变VO层的厚度以探索不同状态下的红外发射率。本研究主要致力于通过结合相变材料设计动态可调微纳结构,实现对可见光和红外波段反射和发射特性的精确控制,从而为隐身技术提供更多可能性。