Peng Hualong, Cai Bo, Zhang Yu, Gao Longcheng, Zhao Pei-Yan, Zhou Lu, Zhang Shan, Liang Wenhao, Xuan Qi-Fan, Koo Martin C, Liang Chen-Ming, Li Wen-Ping, Hou Zhi-Ling, Zhou Tao, Wang Guang-Sheng
Center for Bioinspired Science and Technology, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115.
School of Chemistry, Beihang University, Beijing, 100191.
Angew Chem Int Ed Engl. 2025 Mar 3;64(10):e202421090. doi: 10.1002/anie.202421090. Epub 2025 Jan 14.
Achieving multi-spectrum compatible stealth in radar-terahertz-infrared bands with robust performance has great prospects for both military and civilian applications. However, the progress of materials encounters substantial challenges due to the significant variability in frequency coupling properties across different electromagnetic wave bands. Here, this work presents the design of a multi-scale structure and fabricates a lightweight aerogel (silver nanowire@carbon, AgNW@C) consisting of a regular coaxial nano-cable, with silver nanowire as the core and amorphous-graphitized hybrid carbon as the outer-layer. The design utilizes the one-dimensional conductive network and electric coupling heterogeneous interface, the low infrared emission of silver nanowires, and the thermal insulation caused by three-dimensional pore structure found in aerogels. This conception achieves the long-standing goal of multi-spectrum compatible stealth in an integrated material. The AgNW@C aerogel exhibits an optimal reflection loss of -66.50 dB and an effective absorption bandwidth of 8.80 GHz in the gigahertz band, while an average total shielding performance of 71.92 dB and over 50.00 dB reflection loss in the terahertz band. Furthermore, the AgNW@C aerogel demonstrates remarkable thermal infrared stealth capabilities with a low infrared emissivity of 0.28 and thermal insulation up to 150 °C under 200 °C. These exceptional multispectral stealth properties allow the aerogel for potential applications in military camouflage technology and electromagnetic protection.
在雷达-太赫兹-红外波段实现具有稳健性能的多光谱兼容隐身,在军事和民用应用方面都有巨大前景。然而,由于不同电磁波波段的频率耦合特性存在显著差异,材料的进展面临重大挑战。在此,这项工作提出了一种多尺度结构的设计,并制造了一种轻质气凝胶(银纳米线@碳,AgNW@C),它由规则的同轴纳米电缆组成,以银纳米线为核心,非晶态-石墨化混合碳为外层。该设计利用了一维导电网络和电耦合异质界面、银纳米线的低红外发射以及气凝胶中三维孔隙结构所导致的隔热性能。这一概念在一种集成材料中实现了长期以来的多光谱兼容隐身目标。AgNW@C气凝胶在吉赫兹波段表现出-66.50 dB的最佳反射损耗和8.80 GHz的有效吸收带宽,而在太赫兹波段平均总屏蔽性能为71.92 dB,反射损耗超过50.00 dB。此外,AgNW@C气凝胶展示出卓越的热红外隐身能力,红外发射率低至0.28,在200°C下隔热可达150°C。这些优异的多光谱隐身特性使该气凝胶在军事伪装技术和电磁防护方面具有潜在应用价值。