Suppr超能文献

一家专业儿童医院每位患者入院时诊断数量的增加:一项回顾性研究。

Increasing diagnoses per patient admission at a specialist children's hospital: A retrospective study.

作者信息

Bowyer Stuart A, Booth John, Key Daniel, Pissaridou Eleni, Bryant William A, Hemingway Harry, Sebire Neil J

机构信息

Data Research, Innovation and Virtual Environments (DRIVE) Unit, Great Ormond Street Hospital, London United Kingdom.

NIHR GOSH Biomedical Research Centre, London, United Kingdom.

出版信息

PLoS One. 2025 May 6;20(5):e0322997. doi: 10.1371/journal.pone.0322997. eCollection 2025.

Abstract

OBJECTIVE

In adult practice there is recognition that average patient complexity is increasing, with a greater proportion of patients having multiple diagnoses or comorbidities. This study aims to examine whether there has been a change in number of recorded coexisting diagnoses per patient over a 24-year period for children attending as in-patients to a specialist children's hospital in England.

METHODS

Following all in-patient admissions, patient episodes are allocated specific diagnosis codes (ICD-10) by a specialist clinical coding team according to standard NHS criteria and guidance. We examine the number of coexisting diagnoses allocated per patient admission over a 24-year period.

RESULTS

From a total of 278,579 overnight in-patient admissions during the study period (2000-2023) there were 1,023,276 ICD-10 patient diagnoses. The mean number of diagnoses per admission increased from 2.72 to 10.43 over the period (Kendall's tau statistic of 0.93; p-value < 0.001), an increase of 284% (95% confidence interval 275% - 293%).

CONCLUSIONS

Over recent decades, the recorded complexity of patients attending a specialist children's hospital appear to have increased significantly, with an almost 3-fold increase in the number of coexisting diagnoses present per admission. The cause of this finding cannot be determined from the data; however, it appears to be gradual and consistent, and across all speciality areas suggesting biological or referral factors rather than artefactual coding issues. Recognition of such a trend is important when interpreting retrospective data for AI, research, and planning purposes.

摘要

目的

在成人医疗实践中,人们认识到患者的平均复杂程度在增加,患有多种诊断或合并症的患者比例更高。本研究旨在调查在24年期间,入住英国一家专科儿童医院的儿童患者,其每位患者记录的共存诊断数量是否发生了变化。

方法

在所有住院患者入院后,由专业临床编码团队根据英国国家医疗服务体系(NHS)的标准和指南为患者病历分配特定的诊断代码(ICD - 10)。我们研究了24年期间每位患者入院时分配的共存诊断数量。

结果

在研究期间(2000 - 2023年),共有278,579例过夜住院患者,有1,023,276个ICD - 10患者诊断。在此期间,每次入院的平均诊断数量从2.72增加到10.43(肯德尔tau统计量为0.93;p值<0.001),增加了284%(95%置信区间为275% - 293%)。

结论

近几十年来,入住专科儿童医院的患者记录的复杂程度似乎显著增加,每次入院时共存诊断的数量几乎增加了3倍。这一发现的原因无法从数据中确定;然而,它似乎是渐进且一致的,并且在所有专科领域都存在,这表明是生物学或转诊因素而非人为编码问题。在为人工智能、研究和规划目的解释回顾性数据时,认识到这种趋势很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/387d/12054864/a3516a5bb207/pone.0322997.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验