Suppr超能文献

scDGG:通过时空表示增强单细胞RNA测序数据聚类分析的动态基因图。

scDGG: Dynamic gene graphs for enhancing clustering analysis of single-cell RNA sequencing data via spatiotemporal representations.

作者信息

Li Junnan, Zhang Wei, Dai Qi

机构信息

College of Life Sciences and Medicine, Zhejiang Sci-Tech University, HangZhou, Zhejiang, China.

College of Computer Science and Engineering, Zhejiang Sci-Tech University, HangZhou, Zhejiang, China.

出版信息

Comput Biol Chem. 2025 Apr 30;118:108483. doi: 10.1016/j.compbiolchem.2025.108483.

Abstract

For high-throughput single-cell RNA sequencing (scRNA-seq) data, spatial features have emerged as a powerful representations for downstream analysis. These spatial features contain but not limited to gene graphs and cell graphs. Specifically, gene graphs have been inferred to capture functional interactions between transcriptional factors and marker genes, which are associated with abnormal expression patterns and molecular heterogeneity. Furthermore, incorporation of spatial features is useful to enhance the accuracy of single-cell clustering. However, static gene graphs encode limited cellular information in conveying dynamic regulatory mechanisms that govern cell fates as well as disease progression. To alleviate this drawback, this work extracts and employs dynamic gene graphs, which contribute to a more comprehensive observation of regulatory mechanisms. This study proposes an multi-view graph learning architecture named scDGG to compress dynamic gene graphs from various signaling pathways, with each graph representing a specific biological context. Experimental results about benchmark scRNA-seq datasets have demonstrated the effectiveness and advantages of the scDGG method over SOTA single-cell clustering approaches that take deep learning architecture. It seems dynamic gene graphs could be regarded as high-quality graph representations that outperform static spatial features in single-cell clustering.

摘要

对于高通量单细胞RNA测序(scRNA-seq)数据,空间特征已成为下游分析的强大表示形式。这些空间特征包括但不限于基因图和细胞图。具体而言,基因图已被推断用于捕获转录因子和标记基因之间的功能相互作用,这些相互作用与异常表达模式和分子异质性相关。此外,纳入空间特征有助于提高单细胞聚类的准确性。然而,静态基因图在传达控制细胞命运以及疾病进展的动态调控机制方面编码的细胞信息有限。为了缓解这一缺点,这项工作提取并采用了动态基因图,这有助于更全面地观察调控机制。本研究提出了一种名为scDGG的多视图图学习架构,用于压缩来自各种信号通路的动态基因图,每个图代表一个特定的生物学背景。关于基准scRNA-seq数据集的实验结果证明了scDGG方法相对于采用深度学习架构的SOTA单细胞聚类方法的有效性和优势。动态基因图似乎可以被视为在单细胞聚类中优于静态空间特征的高质量图表示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验