Suppr超能文献

scHybridBERT:整合基因调控和细胞图谱以用于单细胞聚类的时空动力学分析。

scHybridBERT: integrating gene regulation and cell graph for spatiotemporal dynamics in single-cell clustering.

机构信息

Zhejiang Sci-Tech University, 310028, Hangzhou, China.

Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.

出版信息

Brief Bioinform. 2024 Jan 22;25(2). doi: 10.1093/bib/bbae018.

Abstract

Graph learning models have received increasing attention in the computational analysis of single-cell RNA sequencing (scRNA-seq) data. Compared with conventional deep neural networks, graph neural networks and language models have exhibited superior performance by extracting graph-structured data from raw gene count matrices. Established deep neural network-based clustering approaches generally focus on temporal expression patterns while ignoring inherent interactions at gene-level as well as cell-level, which could be regarded as spatial dynamics in single-cell data. Both gene-gene and cell-cell interactions are able to boost the performance of cell type detection, under the framework of multi-view modeling. In this study, spatiotemporal embedding and cell graphs are extracted to capture spatial dynamics at the molecular level. In order to enhance the accuracy of cell type detection, this study proposes the scHybridBERT architecture to conduct multi-view modeling of scRNA-seq data using extracted spatiotemporal patterns. In this scHybridBERT method, graph learning models are employed to deal with cell graphs and the Performer model employs spatiotemporal embeddings. Experimental outcomes about benchmark scRNA-seq datasets indicate that the proposed scHybridBERT method is able to enhance the accuracy of single-cell clustering tasks by integrating spatiotemporal embeddings and cell graphs.

摘要

图学习模型在单细胞 RNA 测序 (scRNA-seq) 数据的计算分析中受到了越来越多的关注。与传统的深度神经网络相比,图神经网络和语言模型通过从原始基因计数矩阵中提取图结构数据,表现出了优异的性能。已建立的基于深度神经网络的聚类方法通常侧重于时间表达模式,而忽略了基因水平和细胞水平上的固有相互作用,这些相互作用可以被视为单细胞数据中的空间动态。在多视图建模的框架下,基因-基因和细胞-细胞相互作用都能够提高细胞类型检测的性能。在这项研究中,时空嵌入和细胞图被提取出来,以捕获分子水平上的空间动态。为了提高细胞类型检测的准确性,本研究提出了 scHybridBERT 架构,该架构使用提取的时空模式对 scRNA-seq 数据进行多视图建模。在 scHybridBERT 方法中,图学习模型用于处理细胞图,而 Performer 模型则利用时空嵌入。关于基准 scRNA-seq 数据集的实验结果表明,所提出的 scHybridBERT 方法通过整合时空嵌入和细胞图,能够提高单细胞聚类任务的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede9/10959234/5ed6683e7c77/bbae018f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验