Suppr超能文献

氧化还原与肌动蛋白,一个引人入胜的故事。

Redox and actin, a fascinating story.

作者信息

Goldschmidt-Clermont Pascal J, Sevilla Brock A

机构信息

University of Miami, Miller School of Medicine, Miami, FL, USA.

United States Army Career Skills Program, USA.

出版信息

Redox Biol. 2025 Jun;83:103630. doi: 10.1016/j.redox.2025.103630. Epub 2025 Apr 12.

Abstract

Actin is an extraordinarily complex protein whose functions are essential to cell motility, division, contraction, signaling, transport, tissular structures, DNA repair, and many more cellular activities critical to life for both animals and plants. It is one of the most abundant and conserved proteins and it exists in either a soluble, globular (monomeric, G-actin) or an insoluble, self-assembled (polymerized or filamentous actin, F-actin) conformation as a key component of the cytoskeleton. In the early 1990's little, if anything, was known about the impact of reactive oxygen species (ROS) on the biology of actin except that ROS could disrupt the actin cytoskeleton. Instructively, G-actin is susceptible to alteration by ROS, and thus, purification of G-actin is typically performed in the presence of strong antioxidants (like dithiothreitol) to limit its oxidative degradation. In contrast, F-actin is a more stable conformation and thus actin can be kept relatively intact in purified preparations as filaments at low temperature for extended periods of time. Both G- and F-actin interact with a myriad of intracellular proteins and at least with a couple of extracellular proteins, and these interactions are essential to the many actin functions. This review will show how, over the past 30 years, our understanding of the role of ROS for actin biology has evolved from noxious denaturizing agents to remarkable regulators of the actin cytoskeleton in cells and consequent cellular functions.

摘要

肌动蛋白是一种极其复杂的蛋白质,其功能对于细胞运动、分裂、收缩、信号传导、运输、组织结构、DNA修复以及动植物生命中许多其他至关重要的细胞活动都必不可少。它是最丰富且保守的蛋白质之一,作为细胞骨架的关键组成部分,它以可溶性球状(单体,G-肌动蛋白)或不溶性自组装(聚合或丝状肌动蛋白,F-肌动蛋白)构象存在。在20世纪90年代初,除了活性氧(ROS)会破坏肌动蛋白细胞骨架外,人们对ROS对肌动蛋白生物学的影响知之甚少。有益的是,G-肌动蛋白易受ROS改变,因此,G-肌动蛋白的纯化通常在强抗氧化剂(如二硫苏糖醇)存在下进行,以限制其氧化降解。相比之下,F-肌动蛋白构象更稳定,因此在低温下,肌动蛋白可以在纯化制剂中以细丝形式长时间保持相对完整。G-肌动蛋白和F-肌动蛋白都与无数细胞内蛋白质相互作用,并且至少与几种细胞外蛋白质相互作用,这些相互作用对于肌动蛋白的许多功能至关重要。这篇综述将展示在过去30年里,我们对ROS在肌动蛋白生物学中的作用的理解是如何从有害的变性剂演变为细胞中肌动蛋白细胞骨架以及随之而来的细胞功能的显著调节因子的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cc4/12127579/96b421cd4348/gr1.jpg

相似文献

1
Redox and actin, a fascinating story.
Redox Biol. 2025 Jun;83:103630. doi: 10.1016/j.redox.2025.103630. Epub 2025 Apr 12.
2
Crosstalk between Rac1-mediated actin regulation and ROS production.
Free Radic Biol Med. 2018 Feb 20;116:101-113. doi: 10.1016/j.freeradbiomed.2018.01.008. Epub 2018 Jan 10.
3
F-actin dismantling through a redox-driven synergy between Mical and cofilin.
Nat Cell Biol. 2016 Aug;18(8):876-85. doi: 10.1038/ncb3390. Epub 2016 Jul 25.
4
Redox regulation of the actin cytoskeleton and its role in the vascular system.
Free Radic Biol Med. 2017 Aug;109:84-107. doi: 10.1016/j.freeradbiomed.2017.03.004. Epub 2017 Mar 8.
5
Actin filaments-A target for redox regulation.
Cytoskeleton (Hoboken). 2016 Oct;73(10):577-595. doi: 10.1002/cm.21315. Epub 2016 Aug 6.
6
Oxidation and reduction of actin: Origin, impact in vitro and functional consequences in vivo.
Eur J Cell Biol. 2022 Jun-Aug;101(3):151249. doi: 10.1016/j.ejcb.2022.151249. Epub 2022 Jun 9.
7
Direct redox regulation of F-actin assembly and disassembly by Mical.
Science. 2011 Dec 23;334(6063):1710-3. doi: 10.1126/science.1211956. Epub 2011 Nov 24.
8
Actin Isoform Composition and Binding Factors Fine-Tune Regulatory Impact of Mical Enzymes.
Int J Mol Sci. 2023 Nov 23;24(23):16651. doi: 10.3390/ijms242316651.
9
Proinflammatory cytokines provoke oxidative damage to actin in neuronal cells mediated by Rac1 and NADPH oxidase.
Mol Cell Neurosci. 2009 Jun;41(2):274-85. doi: 10.1016/j.mcn.2009.03.007. Epub 2009 Apr 1.
10
NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and Rho GTPases in cell migration.
Antioxid Redox Signal. 2014 May 1;20(13):2026-42. doi: 10.1089/ars.2013.5713. Epub 2014 Feb 21.

本文引用的文献

1
Human Schwann Cell-Derived Extracellular Vesicle Isolation, Bioactivity Assessment, and Omics Characterization.
Int J Nanomedicine. 2025 Apr 4;20:4123-4144. doi: 10.2147/IJN.S500159. eCollection 2025.
2
Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine.
Nanoscale Horiz. 2024 Sep 23;9(10):1630-1682. doi: 10.1039/d4nh00171k.
3
Endocytosis at the maternal-fetal interface: balancing nutrient transport and pathogen defense.
Front Immunol. 2024 Jun 18;15:1415794. doi: 10.3389/fimmu.2024.1415794. eCollection 2024.
4
Treating amyotrophic lateral sclerosis with allogeneic Schwann cell-derived exosomal vesicles: a case report.
Neural Regen Res. 2025 Apr 1;20(4):1207-1216. doi: 10.4103/NRR.NRR-D-23-01815. Epub 2024 Apr 3.
5
Cortactin stabilizes actin branches by bridging activated Arp2/3 to its nucleated actin filament.
Nat Struct Mol Biol. 2024 May;31(5):801-809. doi: 10.1038/s41594-023-01205-2. Epub 2024 Jan 24.
6
Cytoskeletal association of ATP citrate lyase controls the mechanodynamics of macropinocytosis.
Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2213272120. doi: 10.1073/pnas.2213272120. Epub 2023 Feb 14.
7
Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis.
Nat Cell Biol. 2023 Mar;25(3):404-414. doi: 10.1038/s41556-023-01091-2. Epub 2023 Feb 6.
8
Lipocalin 2 inhibits actin glutathionylation to promote invasion and migration.
FEBS Lett. 2023 Apr;597(8):1086-1097. doi: 10.1002/1873-3468.14572. Epub 2023 Jan 17.
9
MICAL1 activation by PAK1 mediates actin filament disassembly.
Cell Rep. 2022 Oct 4;41(1):111442. doi: 10.1016/j.celrep.2022.111442.
10
Adaptive stimulation of macropinocytosis overcomes aspartate limitation in cancer cells under hypoxia.
Nat Metab. 2022 Jun;4(6):724-738. doi: 10.1038/s42255-022-00583-z. Epub 2022 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验