Suppr超能文献

缺氧条件下通过适应性刺激巨胞饮作用克服天冬氨酸限制的癌细胞。

Adaptive stimulation of macropinocytosis overcomes aspartate limitation in cancer cells under hypoxia.

机构信息

Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.

Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.

出版信息

Nat Metab. 2022 Jun;4(6):724-738. doi: 10.1038/s42255-022-00583-z. Epub 2022 Jun 20.

Abstract

Stress-adaptive mechanisms enable tumour cells to overcome metabolic constraints under nutrient and oxygen shortage. Aspartate is an endogenous metabolic limitation under hypoxic conditions, but the nature of the adaptive mechanisms that contribute to aspartate availability and hypoxic tumour growth are poorly understood. Here we identify GOT2-catalysed mitochondrial aspartate synthesis as an essential metabolic dependency for the proliferation of pancreatic tumour cells under hypoxic culture conditions. In contrast, GOT2-catalysed aspartate synthesis is dispensable for pancreatic tumour formation in vivo. The dependence of pancreatic tumour cells on aspartate synthesis is bypassed in part by a hypoxia-induced potentiation of extracellular protein scavenging via macropinocytosis. This effect is mutant KRAS dependent, and is mediated by hypoxia-inducible factor 1 (HIF1A) and its canonical target carbonic anhydrase-9 (CA9). Our findings reveal high plasticity of aspartate metabolism and define an adaptive regulatory role for macropinocytosis by which mutant KRAS tumours can overcome nutrient deprivation under hypoxic conditions.

摘要

应激适应机制使肿瘤细胞能够克服营养和氧气短缺下的代谢限制。天冬氨酸是缺氧条件下的内源性代谢限制物,但有助于天冬氨酸可用性和缺氧肿瘤生长的适应机制的性质了解甚少。在这里,我们确定 GOT2 催化的线粒体天冬氨酸合成是缺氧培养条件下胰腺肿瘤细胞增殖的必需代谢依赖性。相比之下,GOT2 催化的天冬氨酸合成对于体内胰腺肿瘤的形成是可有可无的。胰腺肿瘤细胞对天冬氨酸合成的依赖性部分通过缺氧诱导的通过巨胞饮作用增强细胞外蛋白质清除来绕过。这种效应依赖于突变型 KRAS,由缺氧诱导因子 1 (HIF1A) 和其典型靶标碳酸酐酶-9 (CA9) 介导。我们的研究结果揭示了天冬氨酸代谢的高可塑性,并定义了巨胞饮作用的适应性调节作用,通过该作用,突变型 KRAS 肿瘤可以在缺氧条件下克服营养缺乏。

相似文献

1
Adaptive stimulation of macropinocytosis overcomes aspartate limitation in cancer cells under hypoxia.
Nat Metab. 2022 Jun;4(6):724-738. doi: 10.1038/s42255-022-00583-z. Epub 2022 Jun 20.
2
Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells With Activated KRAS in Response to Hypoxia.
Gastroenterology. 2019 Sep;157(3):823-837. doi: 10.1053/j.gastro.2019.05.004. Epub 2019 May 9.
3
5
RAGE is essential for oncogenic KRAS-mediated hypoxic signaling in pancreatic cancer.
Cell Death Dis. 2014 Oct 23;5(10):e1480. doi: 10.1038/cddis.2014.445.
7
Gold Nanoparticles Inhibit Macropinocytosis by Decreasing KRAS Activation.
ACS Nano. 2023 May 23;17(10):9326-9337. doi: 10.1021/acsnano.3c00920. Epub 2023 May 2.
9
KRAS-Independent Macropinocytosis in Pancreatic Cancer.
Subcell Biochem. 2022;98:205-221. doi: 10.1007/978-3-030-94004-1_11.
10
KRAS-regulated glutamine metabolism requires UCP2-mediated aspartate transport to support pancreatic cancer growth.
Nat Metab. 2020 Dec;2(12):1373-1381. doi: 10.1038/s42255-020-00315-1. Epub 2020 Nov 23.

引用本文的文献

1
GOT2: a moonlighting enzyme at the crossroads of cancer metabolism and theranostics.
Front Immunol. 2025 Aug 6;16:1626914. doi: 10.3389/fimmu.2025.1626914. eCollection 2025.
2
Dual-targeted N-PMI@CA nanoplatform for concurrent MDM2 and β-catenin inhibition in p53 wild-type lung adenocarcinoma.
Mater Today Bio. 2025 Jul 26;34:102136. doi: 10.1016/j.mtbio.2025.102136. eCollection 2025 Oct.
3
What's on the menu?: metabolic constraints in the pancreatic tumor microenvironment.
J Clin Invest. 2025 Jul 15;135(14). doi: 10.1172/JCI191940.
4
Glycosaminoglycan-driven lipoprotein uptake protects tumours from ferroptosis.
Nature. 2025 Jun 11. doi: 10.1038/s41586-025-09162-0.
5
Redox and actin, a fascinating story.
Redox Biol. 2025 Jun;83:103630. doi: 10.1016/j.redox.2025.103630. Epub 2025 Apr 12.
6
GOT2: New therapeutic target in pancreatic cancer.
Genes Dis. 2024 Jul 2;12(4):101370. doi: 10.1016/j.gendis.2024.101370. eCollection 2025 Jul.
7
Amino acids in cancer: Understanding metabolic plasticity and divergence for better therapeutic approaches.
Cell Rep. 2025 Apr 22;44(4):115529. doi: 10.1016/j.celrep.2025.115529. Epub 2025 Apr 6.
9
Succinate Dehydrogenase loss causes cascading metabolic effects that impair pyrimidine biosynthesis.
bioRxiv. 2025 Feb 19:2025.02.18.638948. doi: 10.1101/2025.02.18.638948.
10
The role of GOT1 in cancer metabolism.
Front Oncol. 2024 Dec 24;14:1519046. doi: 10.3389/fonc.2024.1519046. eCollection 2024.

本文引用的文献

1
Functional Genomics In Vivo Reveal Metabolic Dependencies of Pancreatic Cancer Cells.
Cell Metab. 2021 Jan 5;33(1):211-221.e6. doi: 10.1016/j.cmet.2020.10.017. Epub 2020 Nov 4.
2
The Frequency of Ras Mutations in Cancer.
Cancer Res. 2020 Jul 15;80(14):2969-2974. doi: 10.1158/0008-5472.CAN-19-3682. Epub 2020 Mar 24.
3
Macropinocytosis confers resistance to therapies targeting cancer anabolism.
Nat Commun. 2020 Feb 28;11(1):1121. doi: 10.1038/s41467-020-14928-3.
4
Maintaining Iron Homeostasis Is the Key Role of Lysosomal Acidity for Cell Proliferation.
Mol Cell. 2020 Feb 6;77(3):645-655.e7. doi: 10.1016/j.molcel.2020.01.003. Epub 2020 Jan 23.
5
Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis.
Nature. 2019 Dec;576(7787):477-481. doi: 10.1038/s41586-019-1831-x. Epub 2019 Dec 11.
6
Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells With Activated KRAS in Response to Hypoxia.
Gastroenterology. 2019 Sep;157(3):823-837. doi: 10.1053/j.gastro.2019.05.004. Epub 2019 May 9.
7
Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death.
Nature. 2019 Mar;567(7746):118-122. doi: 10.1038/s41586-019-0945-5. Epub 2019 Feb 13.
8
Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours.
Nat Cell Biol. 2018 Jul;20(7):775-781. doi: 10.1038/s41556-018-0118-z. Epub 2018 Jun 25.
9
Aspartate is an endogenous metabolic limitation for tumour growth.
Nat Cell Biol. 2018 Jul;20(7):782-788. doi: 10.1038/s41556-018-0125-0. Epub 2018 Jun 25.
10
Metabolic Interactions in the Tumor Microenvironment.
Trends Cell Biol. 2017 Nov;27(11):863-875. doi: 10.1016/j.tcb.2017.06.003. Epub 2017 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验