Suppr超能文献

ZNF574是核糖体生物发生缺陷中间体的质量控制因子。

ZNF574 is a quality control factor for defective ribosome biogenesis intermediates.

作者信息

Akers Jared F, LaScola Michael, Bothe Adrian, Suh Hanna, Jung Carmen, Stolp Zachary D, Ghosh Tanushree, Yan Liewei L, Wang Yuming, Macurak Michelle, Devan Amisha, McKinney Mary C, Grismer Tarabryn S, Reyes Andres V, Ross Eric J, Hu Tianyi, Xu Shou-Ling, Ban Nenad, Kostova Kamena K

机构信息

Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA.

Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.

出版信息

Mol Cell. 2025 May 15;85(10):2048-2060.e9. doi: 10.1016/j.molcel.2025.04.017. Epub 2025 May 5.

Abstract

Eukaryotic ribosome assembly is an intricate process that involves four ribosomal RNAs, 80 ribosomal proteins, and over 200 biogenesis factors that participate in numerous interdependent steps. The complexity and essentiality of this process create opportunities for deleterious mutations to occur, accumulate, and impact downstream cellular processes. "Dead-end" ribosome intermediates that result from biogenesis errors are rapidly degraded, affirming the existence of quality control (QC) pathway(s) that monitor ribosome assembly. However, the factors that differentiate between on-path and dead-end intermediates are unknown. We engineered a system to perturb ribosome assembly in human cells and discovered that faulty ribosomes are degraded via the ubiquitin-proteasome system. We identified ZNF574 as a key component of a QC pathway, which we term the ribosome assembly surveillance pathway (RASP). In an animal model, loss of ZNF574 leads to developmental defects, emphasizing the importance of RASP in organismal health.

摘要

真核生物核糖体组装是一个复杂的过程,涉及四种核糖体RNA、80种核糖体蛋白以及200多种生物发生因子,这些因子参与众多相互依赖的步骤。这个过程的复杂性和必要性为有害突变的发生、积累并影响下游细胞过程创造了机会。生物发生错误产生的“终止”核糖体中间体迅速降解,这证实了监测核糖体组装的质量控制(QC)途径的存在。然而,区分正常组装中间体和终止中间体的因子尚不清楚。我们设计了一个系统来干扰人类细胞中的核糖体组装,发现有缺陷的核糖体通过泛素-蛋白酶体系统被降解。我们确定ZNF574是QC途径的一个关键组成部分,我们将其称为核糖体组装监测途径(RASP)。在动物模型中,ZNF574的缺失会导致发育缺陷,强调了RASP在机体健康中的重要性。

相似文献

6
Eukaryotic Ribosome Assembly.真核生物核糖体组装。
Annu Rev Biochem. 2024 Aug;93(1):189-210. doi: 10.1146/annurev-biochem-030222-113611. Epub 2024 Jul 2.
7
Ribosome assembly in eukaryotes.真核生物中的核糖体组装
Gene. 2003 Aug 14;313:17-42. doi: 10.1016/s0378-1119(03)00629-2.

本文引用的文献

3
BioConvert: a comprehensive format converter for life sciences.BioConvert:一款用于生命科学的综合格式转换器。
NAR Genom Bioinform. 2023 Aug 21;5(3):lqad074. doi: 10.1093/nargab/lqad074. eCollection 2023 Sep.
4
Principles of human pre-60 biogenesis.人类前 60 生物发生原则。
Science. 2023 Jul 7;381(6653):eadh3892. doi: 10.1126/science.adh3892.
5
Chaperone-directed ribosome repair after oxidative damage.伴侣蛋白指导的核糖体氧化损伤后修复。
Mol Cell. 2023 May 4;83(9):1527-1537.e5. doi: 10.1016/j.molcel.2023.03.030. Epub 2023 Apr 21.
7
The fidelity of transcription in human cells.人类细胞中的转录保真度。
Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2210038120. doi: 10.1073/pnas.2210038120. Epub 2023 Jan 25.
9
The phenotypic landscape of essential human genes.必需人类基因的表型景观。
Cell. 2022 Nov 23;185(24):4634-4653.e22. doi: 10.1016/j.cell.2022.10.017. Epub 2022 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验