Suppr超能文献

丁丙诺啡对μ-阿片受体部分激动作用的结构决定因素

Structural Determinants of Buprenorphine Partial Agonism at the μ-Opioid Receptor.

作者信息

Gomes Antoniel A S, Giraldo Jesús

机构信息

Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.

Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.

出版信息

J Chem Inf Model. 2025 May 26;65(10):5071-5085. doi: 10.1021/acs.jcim.5c00078. Epub 2025 May 6.

Abstract

The μ-opioid receptor (μOR) is a class A G Protein-Coupled Receptor (GPCR) targeted by natural and synthetic ligands to provide analgesia to patients with pain of various etiologies. Available opioid medications present several unwanted side effects, stressing the need for safer pain therapies. Despite the attractive proposal that biasing μOR signaling toward G protein pathways would lead to fewer side effects, recent studies indicate that low-efficacy opioid drugs, such as buprenorphine, may represent a safer alternative. In the present work, we combine molecular docking, microsecond-time scale molecular dynamics (MD) simulations, and metadynamics to investigate the conformational dynamics of the μOR bound to morphine or buprenorphine. Our objective was to determine structural aspects associated with the unique pharmacological effects caused by the latter, taking morphine as a reference. MD simulations identified a salt bridge with D149 as crucial for stabilizing both ligands into the μOR orthosteric site, with this interaction being weaker in buprenorphine. The morphinan-scaffold of both ligands shared contacts with transmembrane (TM) helix residues of the receptor, including TM3, TM5, TM6, and TM7. Conversely, while morphine showed stronger interactions with a few TM3 residues, additional chemical groups of buprenorphine showed stronger interactions with TM2, extracellular loop 2 (ECL2), and TM7 residues. We also observed distinct TM arrangements induced by these ligands, with buprenorphine causing an extracellular outward movement of TM7 and morphine provoking intracellular inward movements of TM5 and TM7 of the receptor. In addition, we found that buprenorphine tends to explore deeper regions in the μOR orthosteric site, further supported by funnel-metadynamics, resulting in diverse side chain orientations of W295. Metadynamics also unveiled distinct intermediate states for morphine and buprenorphine, with the latter accessing a secondary binding site associated with partial μOR agonists. Our results indicate that the weakened salt bridge of buprenorphine with D149, along with the strong TM7 interaction through its cyclopropyl group, may explain its low efficacy and consequent partial μOR agonism. Furthermore, ECL2 interactions may contribute to explaining the biased agonism of buprenorphine, a common feature shared with other opioid modulators with similar functional effects. Our study sheds light on the complex pharmacology of buprenorphine, identifying structural aspects associated with its partial and biased μOR agonism. These results can provide valuable information for the design of new effective and safer opioid drugs.

摘要

μ-阿片受体(μOR)是一种A类G蛋白偶联受体(GPCR),天然和合成配体均可作用于该受体,为患有各种病因疼痛的患者提供镇痛作用。现有的阿片类药物存在多种不良副作用,这凸显了对更安全疼痛治疗方法的需求。尽管有一种颇具吸引力的观点认为,使μOR信号偏向G蛋白途径会减少副作用,但最近的研究表明,低效能阿片类药物,如丁丙诺啡,可能是一种更安全的选择。在本研究中,我们结合分子对接、微秒级分子动力学(MD)模拟和元动力学,来研究与吗啡或丁丙诺啡结合的μOR的构象动力学。我们的目标是以吗啡为参照,确定与丁丙诺啡独特药理作用相关的结构方面。MD模拟确定了与D149形成的盐桥对于将两种配体稳定在μOR正构位点至关重要,这种相互作用在丁丙诺啡中较弱。两种配体的吗啡喃骨架与受体的跨膜(TM)螺旋残基存在相互作用,包括TM3、TM5、TM6和TM7。相反,虽然吗啡与一些TM3残基的相互作用更强,但丁丙诺啡的其他化学基团与TM2、细胞外环2(ECL2)和TM7残基的相互作用更强。我们还观察到这些配体诱导的不同TM排列,丁丙诺啡导致TM7向细胞外向外移动,而吗啡则引起受体的TM5和TM7向细胞内向内移动。此外,我们发现丁丙诺啡倾向于在μOR正构位点探索更深的区域,漏斗元动力学进一步支持了这一点,导致W295的侧链取向多样。元动力学还揭示了吗啡和丁丙诺啡不同的中间状态,丁丙诺啡可进入与部分μOR激动剂相关的二级结合位点。我们的结果表明,丁丙诺啡与D149的盐桥减弱,以及其通过环丙基与TM7的强相互作用,可能解释了其低效能以及随之而来的部分μOR激动作用。此外,ECL2相互作用可能有助于解释丁丙诺啡的偏向激动作用,这是与其他具有类似功能效应的阿片类调节剂共有的一个共同特征。我们的研究揭示了丁丙诺啡复杂的药理学,确定了与其部分和偏向μOR激动作用相关的结构方面。这些结果可为设计新的有效且更安全的阿片类药物提供有价值的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验