Suppr超能文献

诊断编码和实验室检查用于识别胆管癌及其亚型的有效性。

Validity of Diagnostic Codes and Laboratory Tests to Identify Cholangiocarcinoma and Its Subtypes.

作者信息

Ferrante Nicole D, Hubbard Rebecca A, Weinfurtner Kelley, Mezina Anya I, Newcomb Craig W, Furth Emma E, Bhattacharya Debika, Njei Basile, Taddei Tamar H, Singal Amit, Hoteit Maarouf A, Park Lesley S, Kaplan David, Lo Re Vincent

机构信息

Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Center for Real-World Effectiveness and Safety of Therapeutics, Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2025 May;34(5):e70154. doi: 10.1002/pds.70154.

Abstract

BACKGROUND

The absence of validated methods to identify cholangiocarcinoma in real-world data has prevented the conduct of pharmacoepidemiologic studies to evaluate determinants of this malignancy and examine the effectiveness of cholangiocarcinoma treatments.

OBJECTIVE

To determine the accuracy of International Classification of Diseases for Oncology, Third Edition (ICD-O-3)-based algorithms to identify cholangiocarcinoma and its subtype (intrahepatic or extrahepatic) within US Veterans Health Administration (VA) data.

METHODS

We identified patients with cholangiocarcinoma ICD-O-3 diagnosis codes from January 2000-December 2019 in VA data. We developed eight algorithms utilizing ICD-O-3 histology codes for cholangiocarcinoma and further used ICD-O-3 topography codes for location (liver, intrahepatic bile duct, extrahepatic bile duct) plus maximum total bilirubin (≥ 3 mg/dL vs. < 3 mg/dL) within ± 45 days of diagnosis to identify cholangiocarcinoma subtype. Up to 80 patients were randomly selected for each algorithm, and their records were reviewed by two hepatologists. The positive predictive values (PPV) and 95% confidence interval (CI) for each algorithm were estimated.

RESULTS

Among 2934 unique patients who met inclusion criteria, 574 were randomly selected for validation. All eight algorithms had high PPV for definite or probable cholangiocarcinoma, ranging from 83.8% (95% CI, 73.8%-91.1%) to 100.0% (95% CI, 95.5%-100.0%). Among three algorithms to identify intrahepatic cholangiocarcinoma, two had PPV ≥ 80% (range: 88.8% [95% CI, 79.7%-94.7%]-91.3% [95% CI, 82.8%-96.4%]). Among five algorithms to identify extrahepatic cholangiocarcinoma, four had PPV ≥ 80% (range: 80.0% [95% CI, 69.6%-88.1%]-94.0% [83.5%-98.7%]).

CONCLUSION

These algorithms can be used in future pharmacoepidemiologic studies to evaluate medications associated with intrahepatic or extrahepatic cholangiocarcinoma.

摘要

背景

在真实世界数据中缺乏经过验证的胆管癌识别方法,这阻碍了药物流行病学研究的开展,无法评估这种恶性肿瘤的决定因素以及检验胆管癌治疗的有效性。

目的

确定基于国际疾病分类肿瘤学第三版(ICD - O - 3)的算法在美国退伍军人健康管理局(VA)数据中识别胆管癌及其亚型(肝内或肝外)的准确性。

方法

我们在VA数据中识别出2000年1月至2019年12月期间具有胆管癌ICD - O - 3诊断代码的患者。我们利用胆管癌的ICD - O - 3组织学代码开发了八种算法,并进一步使用ICD - O - 3部位代码来确定位置(肝脏、肝内胆管、肝外胆管),同时结合诊断前后±45天内的最大总胆红素(≥3mg/dL与<3mg/dL)来识别胆管癌亚型。每种算法随机选择多达80名患者,其记录由两名肝病专家进行审查。估计每种算法的阳性预测值(PPV)和95%置信区间(CI)。

结果

在符合纳入标准的2934名独特患者中,随机选择574名进行验证。所有八种算法对确诊或可能的胆管癌都有较高的PPV,范围从83.8%(95%CI,73.8% - 91.1%)到100.0%(95%CI,95.5% - 100.0%)。在三种识别肝内胆管癌的算法中,两种算法的PPV≥80%(范围:88.8%[95%CI,79.7% - 94.7%] - 91.3%[95%CI,82.8% - 96.4%])。在五种识别肝外胆管癌的算法中,四种算法的PPV≥80%(范围:80.0%[95%CI,69.6% - 88.1%] - 94.0%[83.5% - 98.7%])。

结论

这些算法可用于未来的药物流行病学研究,以评估与肝内或肝外胆管癌相关的药物。

相似文献

1
Validity of Diagnostic Codes and Laboratory Tests to Identify Cholangiocarcinoma and Its Subtypes.
Pharmacoepidemiol Drug Saf. 2025 May;34(5):e70154. doi: 10.1002/pds.70154.
2
De Novo Natural Language Processing Algorithm Accurately Identifies Myxofibrosarcoma From Pathology Reports.
Clin Orthop Relat Res. 2025 Jan 1;483(1):80-87. doi: 10.1097/CORR.0000000000003270. Epub 2024 Oct 2.
3
Accuracy of posthospitalization stroke detection following carotid revascularization in Medicare claims.
J Vasc Surg. 2025 Aug;82(2):489-496. doi: 10.1016/j.jvs.2025.03.201. Epub 2025 Apr 1.
5
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
6
Postoperative adjuvant chemotherapy for resectable cholangiocarcinoma.
Cochrane Database Syst Rev. 2021 Sep 13;9(9):CD012814. doi: 10.1002/14651858.CD012814.pub2.
7
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
8
Ultrasound versus liver function tests for diagnosis of common bile duct stones.
Cochrane Database Syst Rev. 2015 Feb 26;2015(2):CD011548. doi: 10.1002/14651858.CD011548.
10
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.

本文引用的文献

1
2
Cholangiocarcinoma miscoding in hepatobiliary centres.
Eur J Surg Oncol. 2021 Mar;47(3 Pt B):635-639. doi: 10.1016/j.ejso.2020.09.039. Epub 2020 Oct 1.
3
Global trends in intrahepatic and extrahepatic cholangiocarcinoma incidence from 1993 to 2012.
Cancer. 2020 Jun 1;126(11):2666-2678. doi: 10.1002/cncr.32803. Epub 2020 Mar 4.
4
The 2019 WHO classification of tumours of the digestive system.
Histopathology. 2020 Jan;76(2):182-188. doi: 10.1111/his.13975. Epub 2019 Nov 13.
7
Cholangiocarcinoma.
Surg Pathol Clin. 2018 Jun;11(2):403-429. doi: 10.1016/j.path.2018.02.005.
8
Forty-Year Trends in Cholangiocarcinoma Incidence in the U.S.: Intrahepatic Disease on the Rise.
Oncologist. 2016 May;21(5):594-9. doi: 10.1634/theoncologist.2015-0446. Epub 2016 Mar 21.
9
The Veterans Affairs's Corporate Data Warehouse: Uses and Implications for Nursing Research and Practice.
Nurs Adm Q. 2015 Oct-Dec;39(4):311-8. doi: 10.1097/NAQ.0000000000000118.
10
Pathologic classification of cholangiocarcinoma: New concepts.
Best Pract Res Clin Gastroenterol. 2015 Apr;29(2):277-93. doi: 10.1016/j.bpg.2015.02.006. Epub 2015 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验