Wang Junjie, Deng Qingao, Qi Lu
The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.
The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.
Sci Rep. 2025 May 6;15(1):15787. doi: 10.1038/s41598-025-00620-3.
Evidence indicates a connection between periodontitis (PD) and systemic lupus erythematosus (SLE), though the underlying co-morbid mechanisms remain unclear. This study sought to identify the genetic factors and potential therapeutic agents involved in the interaction between PD and SLE. We employed multi-omics methodologies, encompassing differential expression analysis, weighted gene co-expression network analysis (WGCNA), functional enrichment (GO/KEGG), LASSO regression, diagnostic model construction, protein-protein interaction (PPI) networks, immune infiltration profiling, computational drug prediction, molecular docking, and disease subtyping, to analyze PD and SLE expression datasets from the Gene Expression Omnibus (GEO) database (GSE10334, GSE16134, GSE50772, and GSE81622). Cross-analysis identified 32 crosstalk genes (CGs) common to both PD and SLE. LASSO analysis pinpointed three key diagnostic genes (TAGLN, MMP9, TNFAIP6) for both conditions. The resulting diagnostic models demonstrated robust efficacy in both training and validation datasets. Four topological algorithms in Cytoscape highlighted four central crosstalk genes (TAGLN, MMP9, TNFAIP6, IL1B). Additionally, hesperidin, doxycycline, and cytochalasin D emerged as potential therapeutic agents. Two subtypes (C1 and C2) of PD and SLE were delineated based on CG expression profiles. The development of diagnostic models, potential drug identification, and disease subtype classification are poised to enhance diagnosis and treatment. These findings aim to deepen the understanding of PD and SLE complexities.
有证据表明牙周炎(PD)与系统性红斑狼疮(SLE)之间存在联系,尽管潜在的共病机制尚不清楚。本研究旨在确定参与PD和SLE相互作用的遗传因素和潜在治疗药物。我们采用了多组学方法,包括差异表达分析、加权基因共表达网络分析(WGCNA)、功能富集(GO/KEGG)、LASSO回归、诊断模型构建、蛋白质-蛋白质相互作用(PPI)网络、免疫浸润分析、计算药物预测、分子对接和疾病亚型划分,以分析来自基因表达综合数据库(GEO)(GSE10334、GSE16134、GSE50772和GSE81622)的PD和SLE表达数据集。交叉分析确定了PD和SLE共有的32个串扰基因(CGs)。LASSO分析确定了两种疾病的三个关键诊断基因(TAGLN、MMP9、TNFAIP6)。所得诊断模型在训练和验证数据集中均显示出强大的功效。Cytoscape中的四种拓扑算法突出了四个核心串扰基因(TAGLN、MMP9、TNFAIP6、IL1B)。此外,橙皮苷、强力霉素和细胞松弛素D成为潜在的治疗药物。基于CG表达谱划分了PD和SLE的两种亚型(C1和C2)。诊断模型的开发、潜在药物的识别和疾病亚型分类有望加强诊断和治疗。这些发现旨在加深对PD和SLE复杂性的理解。