Hansora Dharmesh, Mehrotra Rashmi, Noh Eunseo, Yoo Jin Wook, Kim Minkyung, Byun Woo Jin, Park Jaewang, Jang Ji-Wook, Seok Sang Il, Lee Jae Sung
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
Emergent Hydrogen Technology R&D Centre, UNIST, Ulsan, Republic of Korea.
Nat Commun. 2025 May 6;16(1):4186. doi: 10.1038/s41467-025-59597-2.
An artificial leaf mimicking the function of a natural leaf has recently attracted significant attention due to its minimal space requirement and low cost compared to wired photoelectrochemical and photovoltaic-electrochemical systems for solar hydrogen production. However, it remains a challenge to achieve a practical-size solar water-splitting device that can fulfill the criteria of a solar-to-hydrogen conversion efficiency above 10%, long-term durability, and scalability. Here, we develop 1 cm perovskite-based photoelectrodes using a defect-less, chlorine-doped formamidinium lead triiodide as photo-absorber and ultraviolet-insensitive tin oxide as an electron transport layers. This device is encapsulated using electrocatalyst-deposited nickel foils, which demonstrates high photocurrent density and high stability for 140 h. Ultimately, we fabricate a scalable mini-module-sized artificial leaf (16 cm) consisting of a side-by-side/parallel configuration of photoanode and photocathode architecture integrated with a 4 × 4 array of 1 cm photoelectrodes, which maintains a stable 'module-level' solar-to-hydrogen efficiency of 11.2% in an unbiased solar water-splitting under 1-sun illumination.
与用于太阳能制氢的有线光电化学和光伏电化学系统相比,一种模仿天然树叶功能的人造树叶因其所需空间极小且成本低,最近引起了广泛关注。然而,要实现一个实用尺寸的太阳能水分解装置,使其满足太阳能到氢能转换效率高于10%、长期耐用性和可扩展性的标准,仍然是一项挑战。在此,我们使用无缺陷的氯掺杂甲脒铅三碘化物作为光吸收剂,以及对紫外线不敏感的氧化锡作为电子传输层,开发了1厘米的钙钛矿基光电极。该装置使用沉积有催化剂的镍箔进行封装,在140小时内表现出高光电流密度和高稳定性。最终,我们制造了一个可扩展的微型模块尺寸的人造树叶(16厘米),它由光阳极和光阴极结构的并排/平行配置组成,并集成了一个4×4阵列的1厘米光电极,在1个太阳光照下的无偏压太阳能水分解中,其“模块级”太阳能到氢能的效率保持在11.2%的稳定水平。