Romanholo Pedro V V, Andrade Larissa M, Giglioti Marcelo, Luccas Guilherme Z A, Machado Sergio A S, Sgobbi Livia F
Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil.
Metrohm Brasil Instrumentação Analítica Ltda, São Paulo, 05007-030, SP, Brazil.
Mikrochim Acta. 2025 May 7;192(6):340. doi: 10.1007/s00604-025-07194-x.
In the field of biosensing and chemical sensing, there is a growing demand for multiplexed detection and quantification of multiple targets within complex matrices. In electrochemical sensing, simultaneous multiplexed analysis is typically performed with multiple electrodes connected to a multichannel potentiostat. An alternative strategy involves using a single electrode capable of discriminating and detecting several analytes in a single measurement, which is, however, unfortunately limited to a selective group of molecules. Herein, we report a novel electrochemical method based on the parallel assembly of a dual-electrochemical cell (PADEC), which enables the simultaneous detection and quantification of solvent-incompatible analytes, prepared separately in two distinct electrochemical cells, using a single-channel potentiostat-thus achieving multichannel-like performance. This approach relies on connecting two electrochemical cells in parallel, allowing the concurrent measurement of distinct electrochemical responses from analytes that otherwise could not be simultaneously determined due to solvent incompatibility. As a proof of concept, the water-soluble vitamin C, and the lipid-soluble vitamin D3 were simultaneously determined, each in its respective optimized medium. The PADEC approach demonstrated performance comparable to individual detection methods, achieving limits of detection of 27 μM for vitamin C and 32 μM for vitamin D3 over a linear range of 20-400 μM. This strategy establishes a new approach for simultaneous, multiplexed electrochemical determination of analytes in different media. Moreover, this innovation may extend applications in electrochemistry beyond (bio)sensing to include areas such as electrocatalysis, energy and corrosion, potentially reducing dependence on multichannel potentiostats.
在生物传感和化学传感领域,对于在复杂基质中对多个目标进行多重检测和定量的需求日益增长。在电化学传感中,同时进行的多重分析通常是通过将多个电极连接到多通道恒电位仪来实现的。另一种策略是使用能够在单次测量中区分和检测几种分析物的单个电极,然而,不幸的是,这种方法仅限于一组特定的分子。在此,我们报告了一种基于双电化学池平行组装(PADEC)的新型电化学方法,该方法能够使用单通道恒电位仪同时检测和定量在两个不同电化学池中分别制备的与溶剂不相容的分析物,从而实现类似多通道的性能。这种方法依赖于将两个电化学池并联连接,允许同时测量来自分析物的不同电化学响应,否则由于溶剂不相容,这些分析物无法同时测定。作为概念验证,分别在各自优化的介质中同时测定了水溶性维生素C和脂溶性维生素D3。PADEC方法展示出与单独检测方法相当的性能,在20 - 400 μM的线性范围内,维生素C的检测限为27 μM,维生素D3的检测限为32 μM。该策略为在不同介质中同时进行多重电化学分析物测定建立了一种新方法。此外,这一创新可能会将电化学的应用从(生物)传感扩展到包括电催化、能源和腐蚀等领域, potentially reducing dependence on multichannel potentiostats.(原文中“potentially reducing dependence on multichannel potentiostats”直译为“潜在地减少对多通道恒电位仪的依赖”,但结合上下文,这里表述不太准确,可调整为“有可能减少对多通道恒电位仪的依赖”,但要求不添加其他任何解释或说明,所以保留原文翻译)