Makokha John W, Barasa Peter W, Khamala Geoffrey W
Department of Science, Technology and Engineering, Kibabii University, Bungoma, Kenya.
Department of Computer Science, Kibabii University, Bungoma, Kenya.
Heliyon. 2025 Feb 7;11(4):e42549. doi: 10.1016/j.heliyon.2025.e42549. eCollection 2025 Feb 28.
This study presents the development and integration of predictive models for the Normalized Difference Vegetation Index (NDVI) and Bare Soil Index (BSI) using the XGBoost algorithm within the North Rift Weather Prediction System (NRWPS) to enhance ecosystem monitoring in Kenya's North Rift region. Trained on a comprehensive dataset spanning 1995 to 2020, which includes precipitation (from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)), temperature (TerraClimate), historical NDVI (Landsat 4-5 Thematic Mapper (from 1995 to 2013) and Landsat 7 Enhanced Thematic Mapper plus (ETM+) (from 2014 to 2020)), and BSI (SoilGrids) data, the models effectively capture the complex relationships between environmental factors and vegetation health. The BSI model achieved an MSE of 0.029, an MAE of 0.019, and an R-squared score of 0.93, while the NDVI model yielded an MSE of 0.002, an MAE of 0.024, and an R-squared score of 0.945. These results demonstrate the models' strong predictive accuracy, enabling precise assessments of vegetation health and bare soil exposure. By analyzing temporal variations in vegetation health and land degradation from 1995 to 2020, the study identifies a significant inverse relationship between NDVI and BSI, where increasing bare soil exposure corresponds to declining vegetation health. The analysis also reveals that climatic factors particularly temperature (minimum and maximum) and precipitation play a critical role in shaping these trends, with high temperatures after 2000 associated with reduced NDVI, while regions with higher precipitation show healthier vegetation and lower BSI. The successful development of the NRWPS model provides significant opportunities for informing land management strategies, conservation efforts, and agricultural practices, enabling data-driven decision-making. Moreover, its integration into larger decision support systems allows for proactive interventions to mitigate land degradation and climate change stressors. This study emphasizes the importance of sustainable land-use practices and climate adaptation strategies to preserve vegetation health and manage ecosystem vulnerabilities effectively in the wake of regional climate change with the North Rift region most affected.
本研究介绍了在北裂谷天气预报系统(NRWPS)中使用XGBoost算法开发和集成归一化植被指数(NDVI)和裸土指数(BSI)预测模型,以加强对肯尼亚北裂谷地区生态系统的监测。该模型基于1995年至2020年的综合数据集进行训练,该数据集包括降水(气候灾害组红外降水与站点数据(CHIRPS))、温度(TerraClimate)、历史NDVI(陆地卫星4-5专题绘图仪(1995年至2013年)和陆地卫星7增强专题绘图仪加(ETM+)(从ETM+)(2014年至2020年))和BSI(SoilGrids)数据,有效捕捉了环境因素与植被健康之间的复杂关系。BSI模型的均方误差(MSE)为0.029,平均绝对误差(MAE)为0.019,决定系数(R平方)得分为0.93,而NDVI模型的MSE为0.002,MAE为0.024,R平方得分为0.945。这些结果表明模型具有很强的预测准确性,能够精确评估植被健康状况和裸土暴露情况。通过分析1995年至2020年植被健康状况和土地退化的时间变化,该研究发现NDVI和BSI之间存在显著的负相关关系,即裸土暴露增加对应植被健康状况下降。分析还表明,气候因素,特别是温度(最低和最高)和降水在塑造这些趋势方面起着关键作用,2000年后的高温与NDVI降低相关,而降水较多的地区植被更健康,BSI更低。NRWPS模型的成功开发为土地管理策略、保护工作和农业实践提供了重要机会,实现了数据驱动的决策。此外,将其集成到更大的决策支持系统中,可以进行积极干预,以减轻土地退化和气候变化压力。本研究强调了可持续土地利用实践和气候适应策略的重要性,以便在区域气候变化影响最严重的北裂谷地区,有效保护植被健康并管理生态系统脆弱性。