Suppr超能文献

使用基于云的开源CZ ID平台同时检测病原体和抗菌药物耐药基因。

Simultaneous detection of pathogens and antimicrobial resistance genes with the open source, cloud-based, CZ ID platform.

作者信息

Lu Dan, Kalantar Katrina L, Glascock Abigail L, Chu Victoria T, Guerrero Estella S, Bernick Nina, Butcher Xochitl, Ewing Kirsty, Fahsbender Elizabeth, Holmes Olivia, Hoops Erin, Jones Ann E, Lim Ryan, McCanny Suzette, Reynoso Lucia, Rosario Karyna, Tang Jennifer, Valenzuela Omar, Mourani Peter M, Pickering Amy J, Raphenya Amogelang R, Alcock Brian P, McArthur Andrew G, Langelier Charles R

机构信息

Chan Zuckerberg Initiative, Redwood City, CA, USA.

Chan Zuckerberg Biohub, San Francisco, CA, USA.

出版信息

Genome Med. 2025 May 6;17(1):46. doi: 10.1186/s13073-025-01480-2.

Abstract

BACKGROUND

Antimicrobial resistant (AMR) pathogens represent urgent threats to human health, and their surveillance is of paramount importance. Metagenomic next-generation sequencing (mNGS) has revolutionized such efforts, but remains challenging due to the lack of open-access bioinformatics tools capable of simultaneously analyzing both microbial and AMR gene sequences.

RESULTS

To address this need, we developed the Chan Zuckerberg ID (CZ ID) AMR module, an open-access, cloud-based workflow designed to integrate detection of both microbes and AMR genes in mNGS and single-isolate whole-genome sequencing (WGS) data. It leverages the Comprehensive Antibiotic Resistance Database and associated Resistance Gene Identifier software, and works synergistically with the CZ ID short-read mNGS module to enable broad detection of both microbes and AMR genes from Illumina data. We highlight diverse applications of the AMR module through analysis of both publicly available and newly generated mNGS and single-isolate WGS data from four clinical cohort studies and an environmental surveillance project. Through genomic investigations of bacterial sepsis and pneumonia cases, hospital outbreaks, and wastewater surveillance data, we gain a deeper understanding of infectious agents and their resistomes, highlighting the value of integrating microbial identification and AMR profiling for both research and public health. We leverage additional functionalities of the CZ ID mNGS platform to couple resistome profiling with the assessment of phylogenetic relationships between nosocomial pathogens, and further demonstrate the potential to capture the longitudinal dynamics of pathogen and AMR genes in hospital acquired bacterial infections.

CONCLUSIONS

In sum, the new AMR module advances the capabilities of the open-access CZ ID microbial bioinformatics platform by integrating pathogen detection and AMR profiling from mNGS and single-isolate WGS data. Its development represents an important step toward democratizing pathogen genomic analysis and supporting collaborative efforts to combat the growing threat of AMR.

摘要

背景

抗菌药物耐药(AMR)病原体对人类健康构成紧迫威胁,对其进行监测至关重要。宏基因组下一代测序(mNGS)彻底改变了此类监测工作,但由于缺乏能够同时分析微生物和AMR基因序列的开放获取生物信息学工具,仍然具有挑战性。

结果

为满足这一需求,我们开发了Chan Zuckerberg ID(CZ ID)AMR模块,这是一种基于云的开放获取工作流程,旨在整合mNGS和单菌株全基因组测序(WGS)数据中微生物和AMR基因的检测。它利用了综合抗生素耐药数据库和相关的耐药基因识别软件,并与CZ ID短读长mNGS模块协同工作,以实现从Illumina数据中广泛检测微生物和AMR基因。我们通过分析来自四项临床队列研究和一个环境监测项目的公开可用及新生成的mNGS和单菌株WGS数据,突出了AMR模块的多种应用。通过对细菌败血症和肺炎病例、医院暴发以及废水监测数据的基因组研究,我们对感染病原体及其耐药组有了更深入的了解,突出了整合微生物鉴定和AMR分析对于研究和公共卫生的价值。我们利用CZ ID mNGS平台的其他功能,将耐药组分析与医院病原体之间系统发育关系的评估相结合,并进一步证明了在医院获得性细菌感染中捕捉病原体和AMR基因纵向动态的潜力。

结论

总之,新的AMR模块通过整合mNGS和单菌株WGS数据中的病原体检测和AMR分析,提升了开放获取的CZ ID微生物生物信息学平台的能力。其开发是朝着使病原体基因组分析民主化以及支持应对AMR日益增长威胁的协作努力迈出的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b310/12057172/e6f1380d44f7/13073_2025_1480_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验