Xiao Ruibo, Pang Long, Lai Xin, Fan Wei, Lu Zhenya, Gao Junning
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
ACS Sens. 2025 May 23;10(5):3539-3550. doi: 10.1021/acssensors.5c00121. Epub 2025 May 6.
Developing cost-effective NO sensors with ppb-level limit of detection (LOD) is crucial for effectively monitoring this widespread toxic gas. SnO, a promising candidate, suffers from limitations including poor selectivity, high operating temperature, and sensitivity to moisture. To address these challenges, we synthesized high-performance Sb-doped SnO sensors via a hydrothermal method. All SnO products exhibit rutile tetragonal crystalline structures and consist of fine nanoparticles, primarily in the several-nanometer range. It is found that dopant activation in the SnO lattice is dependent on both temperature and doping concentration with minimum resistivity achieved at optimal annealing temperature. For sensor fabrication, an annealing condition at 300 °C in ambient air for 2 h was chosen. All sensors demonstrated prominent selectivity toward NO. The sensor response follows a volcano-shaped curve, with the 1.0 and 2.0 atom % Sb-doped sensors exhibiting the highest responses at room temperature (∼25 °C). This peak response shifts to the 0.1 and 1.0 atom % Sb-doped sensors at 75 °C. The optimal operating temperature for achieving the highest response progressively decreases with increasing Sb doping, while moisture resistance also improves. The SnO:0.1%Sb sensor demonstrates the most impressive overall performance, exhibiting a higher response stability against temperature variation. It boasts an ultrahigh response of 2.65 × 10, rapid response/recovery times of 153 s/11 s to 1 ppm of NO at 75 °C, and a LOD down to 20 ppb. Density functional theory calculations suggest that moderate Sb doping level leads to stronger NO adsorption, explaining the observed optimal performance at moderate doping concentrations.
开发具有十亿分之一级检测限(LOD)的经济高效的一氧化氮(NO)传感器对于有效监测这种广泛存在的有毒气体至关重要。氧化锡(SnO)是一种很有前景的候选材料,但存在选择性差、工作温度高以及对湿度敏感等局限性。为应对这些挑战,我们通过水热法合成了高性能的锑(Sb)掺杂氧化锡传感器。所有的氧化锡产品都呈现金红石四方晶体结构,由主要在几纳米范围内的细小纳米颗粒组成。研究发现,氧化锡晶格中的掺杂剂活化取决于温度和掺杂浓度,在最佳退火温度下可实现最低电阻率。对于传感器制造,选择在环境空气中300°C退火2小时的条件。所有传感器对NO都表现出显著的选择性。传感器响应遵循火山形曲线,1.0原子%和2.0原子%的Sb掺杂传感器在室温(约25°C)下表现出最高响应。在75°C时,这个峰值响应转移到0.1原子%和1.0原子%的Sb掺杂传感器上。随着Sb掺杂量增加,实现最高响应的最佳工作温度逐渐降低,同时耐湿性也有所提高。SnO:0.1%Sb传感器展现出最令人印象深刻的整体性能,对温度变化表现出更高的响应稳定性。它具有2.65×10的超高响应,在75°C下对1 ppm NO的快速响应/恢复时间为153 s/11 s,检测限低至20 ppb。密度泛函理论计算表明,适度的Sb掺杂水平会导致更强的NO吸附,这解释了在适度掺杂浓度下观察到的最佳性能。