Wang Tianyi, Jiang Haochen, Zheng Ruwen, Zhang Chuchu, Ma Xiumei, Liu Yi
Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
Department of Traditional Chinese Medicine, Qingdao Huangdao Central Hospital, Qingdao, Shandong, China.
J Alzheimers Dis. 2025 Jul;106(1):5-17. doi: 10.1177/13872877251336442. Epub 2025 May 6.
BackgroundAlzheimer's disease (AD) is characterized by amyloid-β plaques and tau aggregates, with autophagy dysfunction playing a key pathogenic role. While autophagy modulation shows therapeutic promise, comprehensive bibliometric analyses are lacking.ObjectiveThis study aims to map the research landscape of autophagy in AD through bibliometric analysis, identifying key trends, contributors, and emerging focus areas.MethodsWe analyzed 4018 publications (2003-2023) from Web of Science using VOSviewer and CiteSpace. Publication trends, influential authors, countries, institutions, and research hotspots were examined through co-occurrence, burst detection, and clustering analyses.ResultsAnnual publications have steadily increased, peaking in 2022. The US led in output and citations, with major contributions from the University of California and New York University. Ralph A. Nixon emerged as the most influential author. Early research (2003-2013) primarily focused on protein degradation mechanisms, whereas recent studies (2014-2023) emphasize mitochondrial dysfunction, apoptosis, and related pathways. Key evolving topics include endoplasmic reticulum stress and chaperone-mediated autophagy, with significant implications for therapeutic innovation.ConclusionsAutophagy plays a critical role in AD pathogenesis and represents a promising therapeutic target. Despite mechanistic advances, clinical translation remains challenging. Future research should prioritize multi-omics integration, drug delivery optimization, and managing risks associated with excessive autophagy activation. These findings provide valuable insights for developing novel AD therapies targeting autophagy.