Power Alexander, Gardner Matthew, Andrews Rachael, Cozier Gyles, Kumar Ranjeet, Freeman Tom P, Blagbrough Ian S, Sunderland Peter, Scott Jennifer, Frinculescu Anca, Shine Trevor, Taylor Gillian, Norman Caitlyn, Ménard Hervé, Daéid Niamh N, Sutcliffe Oliver B, Husbands Stephen M, Bowman Richard W, Haines Tom S F, Pudney Christopher R
Department of Computer Science, University of Bath, Bath BA2 7AY, U.K.
Department of Life Sciences, University of Bath, Bath BA2 7AY, U.K.
Anal Chem. 2025 May 20;97(19):10163-10172. doi: 10.1021/acs.analchem.4c05247. Epub 2025 May 7.
Novel psychoactive substances (NPS) pose one of the greatest challenges across the illicit drug landscape. They can be highly potent, and coupled with rapid changes in structure, tracking and identifying these drugs is difficult and presents users with a "Russian roulette" if used. Benzodiazepines, synthetic opioids, synthetic cannabinoids, and synthetic cathinones account for the majority of NPS-related deaths and harm. Detecting these drugs with existing field-portable technologies is challenging and has hampered the development of community harm reduction services and interventions. Herein, we demonstrate that hybridizing fluorescence and reflectance spectroscopies can accurately identify NPS and provide concentration information with a focus on benzodiazepines and nitazenes. The discrimination is achieved through a deep learning algorithm trained on a library of preprocessed spectral data. We demonstrate the potential for these measurements to be made using a low-cost, portable device that requires minimal user training. Using this device, we demonstrate the discrimination of 11 benzodiazepines from "street" tablets that include bulking agents and other excipients. We show the detection of complex mixtures of multiple drugs, with the key example of nitazene + benzodiazepine (metonitazene + bromazolam), fentanyl + xylazine, and heroin + nitazene (etonitazene) combinations. These samples represent current drug trends and are associated with drug-related deaths. When combined with the implementation of detection technology in a portable device, these data point to the immediate potential to support harm reduction work in community-based settings. Finally, we demonstrate that the approach may be generalized to other drug classes outside NPS discrimination.
新型精神活性物质(NPS)是非法毒品领域面临的最大挑战之一。它们可能具有很强的效力,再加上结构的快速变化,追踪和识别这些毒品很困难,使用时会给使用者带来“俄罗斯轮盘赌”般的风险。苯二氮䓬类、合成阿片类、合成大麻素类和合成卡西酮类占与新型精神活性物质相关的死亡和危害的大部分。用现有的现场便携式技术检测这些毒品具有挑战性,阻碍了社区减少危害服务和干预措施的发展。在此,我们证明将荧光光谱和反射光谱相结合可以准确识别新型精神活性物质,并提供浓度信息,重点是苯二氮䓬类和硝氮烯类。这种区分是通过在预处理光谱数据库上训练的深度学习算法实现的。我们展示了使用一种低成本、便携式设备进行这些测量的潜力,该设备几乎不需要用户培训。使用该设备,我们展示了从含有填充剂和其他辅料的“街头”片剂中区分出11种苯二氮䓬类药物。我们展示了对多种药物复杂混合物的检测,关键例子包括硝氮烯 + 苯二氮䓬类(美托氮烯 + 溴替唑仑)、芬太尼 + 赛拉嗪以及海洛因 + 硝氮烯类(依托氮烯)组合。这些样本代表了当前的毒品趋势,且与毒品相关死亡有关。当与便携式设备中的检测技术相结合时,这些数据表明在社区环境中支持减少危害工作具有直接潜力。最后,我们证明该方法可以推广到新型精神活性物质区分之外的其他药物类别。