Darafsheh Arash, Bey Anissa
Department of Radiation Oncology, WashU Medicine, St. Louis, MO, 63110, United States of America.
Phys Med Biol. 2025 May 7;70(10):105008. doi: 10.1088/1361-6560/add106.
. External beam radiation therapy (RT) at ultra-high dose rate (FLASH RT) has shown promise for improving the therapeutic ratio; exploiting its full potential, however, requires systematic preclinical studies to unravel the underlying radiobiological mechanisms. We demonstrate a proton irradiation platform for pre-clinical FLASH studies using a gantry-mounted proton therapy system in clinical operation.. An accessory comprising a transmission ionization chamber, a tray accommodating beam modifying elements, including range shifting blocks made of boron carbide (BC) and poly(methyl methacrylate) (PMMA), and brass apertures to shape the beam's lateral extent was attached to the nozzle. A range modulator composed of arrays of holes drilled in a PMMA slab was used to form a spread-out Bragg peak (SOBP). The integral depth dose (IDD) curves, lateral dose profiles, and dose rate were measured using existing dosimeters for different beam modifying material combinations.. The range modulator allowed achieving an SOBP with 14 mm modulation. The proton range was gradually reduced through adding BC and PMMA blocks in the beamline, while the beam spot's size gradually increased and became more symmetric as protons traveled through more material. The commercial scintillator screen showed a dose-rate-independent response for measuring lateral dose profiles. The representative IDDs of the FLASH beam can be measured with a commercial multilayer ionization chamber device at a low dose rate since the IDD did not depend on the dose rate.. This work demonstrated a platform for delivering ∼70 Gy sSOBP proton FLASH beams using a gantry-mounted synchrocyclotron clinical system. We showed the evolution of an asymmetric and small single proton spot to a more symmetric and larger spot after ranging and shaping through different components. Using dosimeters commonly employed for quality assurance purposes, we report an efficient method for the characterization of proton FLASH beams.
超高剂量率外照射放疗(FLASH放疗)已显示出提高治疗比的前景;然而,要充分发挥其潜力,需要系统的临床前研究来揭示潜在的放射生物学机制。我们展示了一个用于临床前FLASH研究的质子辐照平台,该平台使用临床运行中的龙门式质子治疗系统。一个附件被连接到喷嘴上,该附件包括一个透射电离室、一个容纳束流修正元件的托盘(束流修正元件包括由碳化硼(BC)和聚甲基丙烯酸甲酯(PMMA)制成的射程移位块)以及用于塑造束流横向范围的黄铜准直器。一个由在PMMA平板上钻出的孔阵列组成的射程调制器用于形成扩展布拉格峰(SOBP)。使用现有的剂量计针对不同的束流修正材料组合测量了积分深度剂量(IDD)曲线、横向剂量分布和剂量率。射程调制器能够实现14毫米调制的SOBP。通过在束流线上添加BC和PMMA块,质子射程逐渐减小,而随着质子穿过更多材料,束斑尺寸逐渐增大且变得更加对称。商用闪烁体屏幕在测量横向剂量分布时显示出与剂量率无关的响应。由于IDD不依赖于剂量率,因此可以使用商用多层电离室装置在低剂量率下测量FLASH束流的代表性IDD。这项工作展示了一个使用龙门式同步回旋加速器临床系统输送约70 Gy sSOBP质子FLASH束流的平台。我们展示了在通过不同组件进行射程和整形后,一个不对称且小的单质子束斑演变为一个更对称且更大的束斑。使用通常用于质量保证目的的剂量计,我们报告了一种表征质子FLASH束流的有效方法。