Suppr超能文献

使用多变量多分类模型探索影响婴儿输血次数的特征:一项回顾性研究

Exploring the Characteristics of Infants That Influence Their Number of Transfusions Using a Multivariable Multiclassification Model: A Retrospective Study.

作者信息

Zhang Mengyi, Chen Jian, Feng Jing, Luo Jie, Guo Binhan

机构信息

Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.

Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.

出版信息

Transfus Med Hemother. 2025 Mar 20:1-9. doi: 10.1159/000545329.

Abstract

INTRODUCTION

Factors that influence neonatal transfusions are poorly understood because of individual variations in birth conditions and maternal complications during pregnancy. This study aimed to establish models that incorporate perinatal factors associated with the early prediction and timely management of conditions of infants that require transfusion.

METHODS

Data were collected from electronic medical records. Infants were categorized into non-transfusion, one transfusion, two transfusions, three transfusions, four transfusions, and more than four transfusions groups based on transfusions performed during hospitalization. Models were constructed to predict the number of transfusions needed by the infants using variables that showed significant differences among different transfusion groups based on multivariable, random forest, and gradient boosting tree multiclassification tasks.

RESULTS

Underweight status, premature birth, Apgar scores at 1 min, 5 min, and 10 min, and gestational diabetes mellitus impacted the number of transfusions required by infants. The weighted macro-average area under the curve (AUC) values of three models constructed using previously mentioned variables were as follows: multivariable multiclassification model, AUC = 0.6549/0.7282/0.7379 on training/testing/validation sets; random forest multiclassification model, AUC = 0.8037/0.7628/0.7985 on training/testing/validation sets; and gradient boosting tree multiclassification model, AUC = 0.7422/0.7038/0.7488 on training/testing/validation sets. The weighted macro-average AUC of the three models constructed using Apgar scores were as follows: multivariable multiclassification model, AUC = 0.6425/0.7044/0.7379 on training/testing/validation sets; random forest multiclassification model, AUC = 0.7659/0.7662/0.7985 on training/testing/validation sets; and gradient boosting tree multiclassification model, AUC = 0.6559/0.6251/0.7488 on training/testing/validation sets.

CONCLUSION

Apgar scores at 1 min, 5 min, and 10 min may be preliminary predictive factors that could be used to implement early transfusion strategies for infants after birth. Because of the limitations of the data volume, variable selection, and model performance evaluation, further optimization and improvements are necessary to develop accurate blood transfusion prediction models for infants.

摘要

引言

由于出生条件和孕期母亲并发症存在个体差异,影响新生儿输血的因素尚不清楚。本研究旨在建立模型,纳入与需要输血的婴儿状况的早期预测和及时管理相关的围产期因素。

方法

从电子病历中收集数据。根据住院期间的输血情况,将婴儿分为未输血组、一次输血组、两次输血组、三次输血组、四次输血组和四次以上输血组。使用基于多变量、随机森林和梯度提升树多分类任务在不同输血组之间显示出显著差异的变量,构建模型来预测婴儿所需的输血量。

结果

低体重状态、早产、1分钟、5分钟和10分钟时的阿氏评分以及妊娠期糖尿病影响婴儿所需的输血量。使用上述变量构建的三个模型的加权宏平均曲线下面积(AUC)值如下:多变量多分类模型,训练集/测试集/验证集的AUC = 0.6549/0.7282/0.7379;随机森林多分类模型,训练集/测试集/验证集的AUC = 0.8037/0.7628/0.7985;梯度提升树多分类模型,训练集/测试集/验证集的AUC = 0.7422/0.7038/0.7488。使用阿氏评分构建的三个模型的加权宏平均AUC如下:多变量多分类模型,训练集/测试集/验证集的AUC = 0.6425/0.7044/0.7379;随机森林多分类模型,训练集/测试集/验证集的AUC = 0.7659/0.7662/0.7985;梯度提升树多分类模型,训练集/测试集/验证集的AUC = 0.6559/0.6251/0.7488。

结论

1分钟、5分钟和10分钟时的阿氏评分可能是可用于为出生后婴儿实施早期输血策略的初步预测因素。由于数据量、变量选择和模型性能评估的局限性,有必要进一步优化和改进,以开发出准确的婴儿输血预测模型。

相似文献

本文引用的文献

1
Reducing Iatrogenic Blood Losses in Premature Infants.减少早产儿医源性失血。
Pediatrics. 2024 Oct 1;154(4). doi: 10.1542/peds.2024-065921.
4
Packed red blood cell transfusion in preterm infants.早产儿的红细胞输血。
Lancet Haematol. 2022 Aug;9(8):e615-e626. doi: 10.1016/S2352-3026(22)00207-1.
5
Recommendations for transfusion of blood products in neonatology.新生儿科输血制品建议。
An Pediatr (Engl Ed). 2022 Jul;97(1):60.e1-60.e8. doi: 10.1016/j.anpede.2022.05.003. Epub 2022 Jun 18.
8
Anemia in Pregnancy: Screening and Clinical Management Strategies.妊娠期贫血:筛查与临床管理策略。
MCN Am J Matern Child Nurs. 2022;47(1):25-32. doi: 10.1097/NMC.0000000000000787.
10
A guide to machine learning for biologists.生物学机器学习指南。
Nat Rev Mol Cell Biol. 2022 Jan;23(1):40-55. doi: 10.1038/s41580-021-00407-0. Epub 2021 Sep 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验