Suppr超能文献

基于稀疏性的动脉自旋标记磁共振成像去噪的自适应联合数据选择

ADAPTIVE JOINT DATA SELECTION FOR SPARSITY BASED ARTERIAL SPIN LABELING MRI DENOISING.

作者信息

Liu Hangfan, Li Bo, Li Yiran, Detre John A, Wang Ze

机构信息

University of Maryland School of Medicine, Baltimore, MD 21202 USA.

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635461. Epub 2024 Aug 22.

Abstract

Arterial spin-labeled (ASL) perfusion MRI remains the only non-invasive, radiation-free method for quantifying regional tissue perfusion. ASL MRI computes perfusion signals from the difference of the spin-labeled images and spin-untagged control images. Limited by the T1 decay of the labeled arterial blood, ASL MRI signal is subject to a low signal-to-noise ratio. This issue is particularly vexing due to the absence of ground truth and the difficulty in preserving image textures amidst substantial noise reduction efforts. One major avenue for tackling this challenge involves leveraging the sparsity of image signals, a technique widely employed in unsupervised image denoising. Compared to global models operating at the slice level, enhanced local sparse models not only improve the separation of signal from noise but also preserves local structures more effectively. This paper introduces a joint data selection strategy tailored for ASL denoising, which capitalizes on the strong correlation between paired label and control (L/C) images to identify and assemble highly correlated content, forming potentially sparse matrices. The application of sparsity regularization to these matrices is inherently more adaptive to local structures. Crucially, the proposed method does not rely on any ground-truth training data. In real-world testing with an ASL MRI dataset, the proposed approach remarkably enhances the quality of ASL perfusion maps, utilizing only a single pair of L/C images, and outperforms the conventional pipeline that necessitates multiple L/C pairs.

摘要

动脉自旋标记(ASL)灌注磁共振成像仍然是唯一一种用于量化局部组织灌注的非侵入性、无辐射方法。ASL磁共振成像通过自旋标记图像与自旋未标记对照图像的差异来计算灌注信号。受标记动脉血T1衰减的限制,ASL磁共振成像信号的信噪比很低。由于缺乏真实数据,并且在大幅降噪过程中难以保留图像纹理,这个问题尤其棘手。应对这一挑战的一个主要途径是利用图像信号的稀疏性,这是一种在无监督图像去噪中广泛使用的技术。与在切片级别运行的全局模型相比,增强的局部稀疏模型不仅能更好地将信号与噪声分离,还能更有效地保留局部结构。本文介绍了一种专门为ASL去噪量身定制的联合数据选择策略,该策略利用配对的标记和对照(L/C)图像之间的强相关性来识别和组装高度相关的内容,形成潜在的稀疏矩阵。对这些矩阵应用稀疏正则化本质上更能适应局部结构。至关重要的是,所提出的方法不依赖任何真实数据训练。在使用ASL磁共振成像数据集的实际测试中,所提出的方法仅利用一对L/C图像就显著提高了ASL灌注图的质量,并且优于需要多对L/C图像的传统流程。

相似文献

1
ADAPTIVE JOINT DATA SELECTION FOR SPARSITY BASED ARTERIAL SPIN LABELING MRI DENOISING.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635461. Epub 2024 Aug 22.
2
Multi Echo-Time ASL MRI Denoising via Joint Complex Low-Rank Regularization.
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10782301.
3
Arterial spin labeling perfusion MRI signal denoising using robust principal component analysis.
J Neurosci Methods. 2018 Feb 1;295:10-19. doi: 10.1016/j.jneumeth.2017.11.017. Epub 2017 Nov 28.
4
ASL MRI Denoising via Multi Channel Collaborative Low-Rank Regularization.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3005223. Epub 2024 Apr 2.
6
Patch tensor decomposition and non-local means filter-based hybrid ASL image denoising.
J Neurosci Methods. 2022 Mar 15;370:109488. doi: 10.1016/j.jneumeth.2022.109488. Epub 2022 Jan 26.
7
Denoising arterial spin labeling perfusion MRI with deep machine learning.
Magn Reson Imaging. 2020 May;68:95-105. doi: 10.1016/j.mri.2020.01.005. Epub 2020 Jan 15.
8
Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
Med Phys. 2022 Apr;49(4):2373-2385. doi: 10.1002/mp.15468. Epub 2022 Mar 7.
9
Arterial spin labeling MR image denoising and reconstruction using unsupervised deep learning.
NMR Biomed. 2022 Apr;35(4):e4224. doi: 10.1002/nbm.4224. Epub 2019 Dec 22.
10
Spatio-temporal TGV denoising for ASL perfusion imaging.
Neuroimage. 2017 Aug 15;157:81-96. doi: 10.1016/j.neuroimage.2017.05.054. Epub 2017 May 27.

本文引用的文献

1
ASL MRI Denoising via Multi Channel Collaborative Low-Rank Regularization.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3005223. Epub 2024 Apr 2.
2
Arterial Spin Labeling Perfusion MRI Signal Processing Through Traditional Methods and Machine Learning.
Investig Magn Reson Imaging. 2022 Dec;26(4):220-228. doi: 10.13104/imri.2022.26.4.220. Epub 2022 Dec 31.
3
Tensor denoising of multidimensional MRI data.
Magn Reson Med. 2023 Mar;89(3):1160-1172. doi: 10.1002/mrm.29478. Epub 2022 Oct 11.
4
Recent Technical Developments in ASL: A Review of the State of the Art.
Magn Reson Med. 2022 Nov;88(5):2021-2042. doi: 10.1002/mrm.29381. Epub 2022 Aug 19.
5
Denoising arterial spin labeling perfusion MRI with deep machine learning.
Magn Reson Imaging. 2020 May;68:95-105. doi: 10.1016/j.mri.2020.01.005. Epub 2020 Jan 15.
6
Arterial spin labeling perfusion MRI signal denoising using robust principal component analysis.
J Neurosci Methods. 2018 Feb 1;295:10-19. doi: 10.1016/j.jneumeth.2017.11.017. Epub 2017 Nov 28.
7
Whole-brain background-suppressed pCASL MRI with 1D-accelerated 3D RARE Stack-Of-Spirals readout.
PLoS One. 2017 Aug 24;12(8):e0183762. doi: 10.1371/journal.pone.0183762. eCollection 2017.
8
Spatio-temporal TGV denoising for ASL perfusion imaging.
Neuroimage. 2017 Aug 15;157:81-96. doi: 10.1016/j.neuroimage.2017.05.054. Epub 2017 May 27.
9
3D-accelerated, stack-of-spirals acquisitions and reconstruction of arterial spin labeling MRI.
Magn Reson Med. 2017 Oct;78(4):1405-1419. doi: 10.1002/mrm.26549. Epub 2016 Nov 3.
10
Diffusion MRI noise mapping using random matrix theory.
Magn Reson Med. 2016 Nov;76(5):1582-1593. doi: 10.1002/mrm.26059. Epub 2015 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验