Suppr超能文献

多维 MRI 数据的张量去噪。

Tensor denoising of multidimensional MRI data.

机构信息

Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.

Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.

出版信息

Magn Reson Med. 2023 Mar;89(3):1160-1172. doi: 10.1002/mrm.29478. Epub 2022 Oct 11.

Abstract

PURPOSE

To develop a denoising strategy leveraging redundancy in high-dimensional data.

THEORY AND METHODS

The SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so-called MPPCA: principal component analysis of the signal followed by automated rank estimation, exploiting the Marchenko-Pastur distribution of noise singular values. Operating on matrices comprised of data patches, this popular approach objectively identifies noise components and, ideally, allows noise to be removed without introducing artifacts such as image blurring, or nonlocal averaging. The MPPCA rank estimation, however, relies on a large number of noise singular values relative to the number of signal components to avoid such ill effects. This condition is unlikely to be met when data patches and therefore matrices are small, for example due to spatially varying noise. Here, we introduce tensor MPPCA (tMPPCA) for the purpose of denoising multidimensional data, such as from multicontrast acquisitions. Rather than combining dimensions in matrices, tMPPCA uses each dimension of the multidimensional data's inherent tensor-structure to better characterize noise, and to recursively estimate signal components.

RESULTS

Relative to matrix-based MPPCA, tMPPCA requires no additional assumptions, and comparing the two in a numerical phantom and a multi-TE diffusion MRI data set, tMPPCA dramatically improves denoising performance. This is particularly true for small data patches, suggesting that tMPPCA can be especially beneficial in such cases.

CONCLUSIONS

The MPPCA denoising technique can be extended to high-dimensional data with improved performance for smaller patch sizes.

摘要

目的

开发一种利用高维数据冗余性的去噪策略。

理论与方法

信噪比从根本上限制了 MRI 可获取的信息量。为了解决这个限制,已经提出了许多去噪技术,最近包括所谓的 MPPCA:对信号进行主成分分析,然后自动进行秩估计,利用噪声奇异值的 Marchenko-Pastur 分布。这种流行的方法对由数据块组成的矩阵进行操作,客观地识别噪声分量,并在理想情况下,在不引入图像模糊或非局部平均等伪影的情况下去除噪声。然而,MPPCA 的秩估计依赖于相对于信号分量数量的大量噪声奇异值,以避免这种不良影响。当数据块(因此矩阵)较小时,例如由于空间变化的噪声,这种情况不太可能满足。在这里,我们引入张量 MPPCA(tMPPCA)用于去噪多维数据,例如来自多对比度采集的数据。tMPPCA 不是在矩阵中组合维度,而是使用多维数据固有张量结构的每个维度来更好地描述噪声,并递归地估计信号分量。

结果

与基于矩阵的 MPPCA 相比,tMPPCA 不需要额外的假设,并且在数值体模和多 TE 扩散 MRI 数据集之间进行比较,tMPPCA 显著提高了去噪性能。对于较小的数据块,这一点尤其正确,这表明 tMPPCA 在这种情况下可能特别有益。

结论

MPPCA 去噪技术可以扩展到具有更高维度的数据,对于较小的数据块尺寸,性能得到改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8482/10092037/9fd252be7b15/MRM-89-1160-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验