Yassin Karam, Attias Rinat, Tsur Yoed, Dekel Dario R
The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa 3200003, Israel.
ACS Electrochem. 2025 Jan 17;1(5):655-666. doi: 10.1021/acselectrochem.4c00156. eCollection 2025 May 1.
Anion-exchange membrane (AEM) water electrolyzers (AEMWEs) have gained significant attention for their ability to utilize precious-metal-free catalysts and environmentally friendly fluorine-free hydrocarbon polymeric membranes. In this study, we identify and quantify the sources of performance losses in AEMWEs using an innovative approach based on electrochemical impedance spectroscopy and MATLAB-based impedance spectroscopy genetic programming. Using this approach, we move beyond conventional equivalent circuit models to develop a proper and analytical model of the distribution function of relaxation times (DFRT), enabling a deeper analysis of Faradaic and non-Faradaic processes. We apply this framework to isolate the critical processes-ohmic, ionic transport, charge transfer, and mass transfer-across various conditions, including KOH concentration, dry cathode operation mode with different anode electrolytes (KOH, KCO, and pure water), cell temperature, and membrane type. Our results indicate a considerable performance reduction as the KOH concentration in the anode decreases, primarily due to the relatively high ionic transport resistance. Our observations show that the performance of dry cathode operation with KOH in the anode yields a comparable performance to dual-side electrolyte feeding due to sufficient water back-diffusion from the anode, which efficiently maintains cathode hydration. Conversely, using pure water as an electrolyte in the anode with a dry cathode significantly increases cell resistances and compromises ionic transport, underscoring the urgent need for highly conductive ionomeric materials and strategies. These insights indicate that using DFRT to evaluate the AEMWE operation by separating and associating the electrochemical phenomena could simplify system design while enabling more efficient generation of dry, pure hydrogen and advancing the technology toward commercial application.
阴离子交换膜(AEM)水电解槽(AEMWEs)因其能够使用无贵金属催化剂和环保的无氟烃类聚合物膜而备受关注。在本研究中,我们使用基于电化学阻抗谱和基于MATLAB的阻抗谱遗传编程的创新方法,识别并量化了AEMWEs中性能损失的来源。通过这种方法,我们超越了传统的等效电路模型,开发了一个合适的弛豫时间分布函数(DFRT)分析模型,从而能够更深入地分析法拉第过程和非法拉第过程。我们应用这个框架来分离在各种条件下的关键过程——欧姆过程、离子传输、电荷转移和质量传输,这些条件包括氢氧化钾(KOH)浓度、不同阳极电解液(KOH、KCO和纯水)的干阴极运行模式、电池温度和膜类型。我们的结果表明,随着阳极中KOH浓度的降低,性能会显著下降,这主要是由于相对较高的离子传输电阻。我们的观察结果表明,阳极使用KOH的干阴极运行性能与双侧电解液进料相当,这是因为阳极有足够的水反向扩散,有效地维持了阴极的水合作用。相反,阳极使用纯水作为电解液且采用干阴极会显著增加电池电阻并损害离子传输,这凸显了对高导电离聚体材料和策略的迫切需求。这些见解表明,使用DFRT通过分离和关联电化学现象来评估AEMWE的运行,可以简化系统设计,同时实现更高效地产生干燥、纯净的氢气,并推动该技术走向商业应用。