Li Wei, Zhong Xiaoxuan, Huang Jie, Bai Xue, Liang Yizhi, Cheng Linghao, Jin Long, Tang Hao-Cheng, Lai Yinyan, Guan Bai-Ou
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, China.
MOE Key Laboratory of Laser Life Science, Guangdong Key Laboratory of Laser Life Science, School of Optoelectronic Science & Engineering, South China Normal University, Guangzhou, China.
Photoacoustics. 2025 Apr 18;43:100725. doi: 10.1016/j.pacs.2025.100725. eCollection 2025 Jun.
Photoacoustic microscopy (PAM) faces a fundamental trade-off between detection sensitivity and field of view (FOV). While optical ultrasound sensors offer high-sensitivity unfocused detection, implementing multichannel detection remains challenging. Here, we present a wavelength-time-division multiplexed (WTDM) fiber-optic sensor array that assigns distinct wavelengths to individual sensors and employs varying-length delay fibers for temporal separation, enabling efficient multichannel detection through a single photodetector. Using a 4-element sensor array, we achieved an expanded FOV of 5 × 8 mm² while maintaining high temporal resolution (160 kHz A-line rate, 0.25 Hz frame rate) and microscopic spatial resolution (10.7 μm). The system's capabilities were validated through comparative monitoring of cerebral and intestinal hemodynamics in mice during hypercapnia challenge, revealing distinct temporal patterns with notably delayed recovery in cerebral vascular response compared to intestinal vasculature. This WTDM approach establishes a promising platform for large-field, high-speed photoacoustic imaging in biomedical applications.
光声显微镜(PAM)在检测灵敏度和视野(FOV)之间面临着一个基本的权衡。虽然光学超声传感器提供高灵敏度的非聚焦检测,但实现多通道检测仍然具有挑战性。在这里,我们提出了一种波长时分复用(WTDM)光纤传感器阵列,该阵列将不同的波长分配给各个传感器,并采用不同长度的延迟光纤进行时间分离,从而能够通过单个光电探测器进行高效的多通道检测。使用一个4元素传感器阵列,我们实现了5×8平方毫米的扩展视野,同时保持了高时间分辨率(160千赫兹A线率,0.25赫兹帧率)和微观空间分辨率(10.7微米)。通过在高碳酸血症挑战期间对小鼠脑和肠血流动力学的对比监测,验证了该系统的能力,结果显示与肠血管系统相比,脑血管反应的恢复明显延迟,呈现出明显不同的时间模式。这种WTDM方法为生物医学应用中的大视野、高速光声成像建立了一个有前景的平台。