Huynh N T, Zhang E, Francies O, Kuklis F, Allen T, Zhu J, Abeyakoon O, Lucka F, Betcke M, Jaros J, Arridge S, Cox B, Plumb A A, Beard P
Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK.
Nat Biomed Eng. 2025 May;9(5):638-655. doi: 10.1038/s41551-024-01247-x. Epub 2024 Sep 30.
The clinical assessment of microvascular pathologies (in diabetes and in inflammatory skin diseases, for example) requires the visualization of superficial vascular anatomy. Photoacoustic tomography (PAT) scanners based on an all-optical Fabry-Perot ultrasound sensor can provide highly detailed 3D microvascular images, but minutes-long acquisition times have precluded their clinical use. Here we show that scan times can be reduced to a few seconds and even hundreds of milliseconds by parallelizing the optical architecture of the sensor readout, by using excitation lasers with high pulse-repetition frequencies and by exploiting compressed sensing. A PAT scanner with such fast acquisition minimizes motion-related artefacts and allows for the volumetric visualization of individual arterioles, venules, venous valves and millimetre-scale arteries and veins to depths approaching 15 mm, as well as for dynamic 3D images of time-varying tissue perfusion and other haemodynamic events. In exploratory case studies, we used the scanner to visualize and quantify microvascular changes associated with peripheral vascular disease, skin inflammation and rheumatoid arthritis. Fast all-optical PAT may prove useful in cardiovascular medicine, oncology, dermatology and rheumatology.
对微血管病变(例如糖尿病和炎症性皮肤病中的病变)进行临床评估需要可视化浅表血管解剖结构。基于全光学法布里-珀罗超声传感器的光声断层扫描(PAT)扫描仪能够提供高度详细的三维微血管图像,但长达数分钟的采集时间使其无法应用于临床。在此我们表明,通过并行化传感器读出的光学架构、使用具有高脉冲重复频率的激发激光器以及利用压缩感知技术,扫描时间可缩短至几秒甚至几百毫秒。具备如此快速采集能力的PAT扫描仪可将与运动相关的伪影降至最低,并能够对单个小动脉、小静脉、静脉瓣膜以及毫米级的动脉和静脉进行容积可视化,深度可达近15毫米,还能够获取随时间变化的组织灌注及其他血流动力学事件的动态三维图像。在探索性病例研究中,我们使用该扫描仪对与外周血管疾病、皮肤炎症和类风湿性关节炎相关的微血管变化进行可视化和量化。快速全光学PAT在心血管医学、肿瘤学、皮肤病学和风湿病学领域可能会证明是有用的。