Wu Qin-Wei, Wang Kejian, Kapfhammer Josef P
School of Life Sciences, Anhui University, Hefei 230601, China.
Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, China.
Int J Mol Sci. 2025 Apr 14;26(8):3688. doi: 10.3390/ijms26083688.
Spinocerebellar ataxia (SCA), an autosomal dominant neurodegenerative condition, is marked by a gradual deterioration of cerebellar function. To date, more than 40 distinct SCA subtypes have been identified, with some attributed to CAG repeat expansions and others to point mutations or deletions. Among these, spinocerebellar ataxia type 14 (SCA14) stems from missense mutations or deletions within the gene, encoding protein kinase C gamma (PKCγ), a pivotal signaling molecule abundant in Purkinje cells. Despite its significance, the precise mechanisms underlying how genetic alterations trigger Purkinje cell malfunction and degeneration remain elusive. Given the prominent role and high expression of PKCγ in Purkinje cells, SCA14 presents a unique opportunity to unravel the underlying pathogenesis. A straightforward hypothesis posits that alterations in the biological activity of PKCγ underlie the disease phenotype, and there are hints that mutated PKCγ proteins exhibit altered enzymatic function. Our prior research focused on the PKCγ-G118D mutation, commonly found in SCA14 patients, located in the regulatory domain of the protein. While cellular assays demonstrated enhanced enzymatic activity for PKCγ-G118D, transgenic mice carrying this mutation failed to exhibit suppressed dendritic development in cerebellar cultures, raising questions about its impact within living Purkinje cells. One hypothesis is that endogenous PKCγ might interfere with the expression or effect of PKCγ-G118D. To further investigate, we leveraged CRISPR-Cas9 technology to generate a PKCγ knockout mouse model and integrated it with an L7-based, Purkinje cell-specific transfection system to analyze the effects of G118D protein expression on the dendritic morphology of developing Purkinje cells. Our findings reveal that, utilizing this approach, PKCγ-G118D exerts a detrimental effect on Purkinje cell growth, confirming its negative influence, indicating that the potential of the G118D mutation to contribute to SCA14 pathogenesis.
脊髓小脑共济失调(SCA)是一种常染色体显性神经退行性疾病,其特征是小脑功能逐渐退化。迄今为止,已鉴定出40多种不同的SCA亚型,其中一些归因于CAG重复扩增,另一些归因于点突变或缺失。其中,脊髓小脑共济失调14型(SCA14)源于基因内的错义突变或缺失,该基因编码蛋白激酶Cγ(PKCγ),这是一种在浦肯野细胞中大量存在的关键信号分子。尽管其具有重要意义,但基因改变如何引发浦肯野细胞功能障碍和退化的精确机制仍不清楚。鉴于PKCγ在浦肯野细胞中的突出作用和高表达,SCA14为揭示潜在的发病机制提供了独特的机会。一个简单的假设是,PKCγ生物活性的改变是疾病表型的基础,并且有迹象表明突变的PKCγ蛋白表现出改变的酶功能。我们之前的研究集中在SCA14患者中常见的PKCγ-G118D突变,该突变位于该蛋白的调节域。虽然细胞实验表明PKCγ-G118D的酶活性增强,但携带这种突变的转基因小鼠在小脑培养物中未能表现出树突发育受到抑制,这引发了关于其在活的浦肯野细胞中的影响的疑问。一种假设是内源性PKCγ可能会干扰PKCγ-G118D的表达或作用。为了进一步研究,我们利用CRISPR-Cas9技术生成了一个PKCγ基因敲除小鼠模型,并将其与基于L7的、浦肯野细胞特异性转染系统相结合,以分析G118D蛋白表达对发育中的浦肯野细胞树突形态的影响。我们的研究结果表明,利用这种方法,PKCγ-G118D对浦肯野细胞生长产生有害影响,证实了其负面影响,表明G118D突变对SCA14发病机制的潜在作用。